CCP1

CCP1

cC
OSTK
KUBE
CMP |
CMP |
STRG1
STRG2
STRG3
NET1
NET2
NET3
PERF1

CCl

e capital expenses / CAPEX: incurs when spending money to buy/repair/upgrade fixed/intangible assets cost
cannot be deducted

o hardware, software, licenses

e operational expenses / OPEX: ongoing cost for running a product/business/system
o rented space, electricity, backup+recovery, audit, staff

e total cost of ownership TCO = CAPEX + OPEX

e |CT consumption models: stable, periodic busting, predictable busting, on/off, scheduled increase in capacity
(jump or smooth)

e cloud: self-service, on-demand, elasticity, resource pooling / multi-tenancy, pay-as-you-go, broad network

access
) Infrastructure Container Platform Function Software
On Premises (as a Service) Virtualization (as a Service) (as a Service) (as a Service)
[Applications] [Applications] [pllcations] [Applications] [Applications } [Applicationsj
You Manage
[Data] [Data] [Data J [Data] [Data] [Data]
Vendor Manages
[Runtime] [Runtime] [Runtime] [Tu IRUS] [Runtime] [Runtime] :]
[Middleware] [Middleware J [Middleware J [Middleware] [Middleware] [Middleware]
QS-level
[o] [] [Vlrtuallzatlon} [] [o } [o]
[Virlualization] [Vlrtuallzatlon] [oS] [Vlrtuallzatlon] [Vir‘tualizationj [Virtualization]
[Servers] [Servers] [Servers] [Servers] [Servers j [Servers]
[Storage] [Storage] [Storage J [Storage] [Storage] [Storage]
[Networking] [Networking] [Networking j [Networking] [Networking] [Netwaorking]

af://n0
af://n3

e private cloud: single org; community cloud: specific group; public cloud: open use by general public; hybrid: any
combination

OSTK

e OpenStack is laaS

¢ Nova: compute, Glance: images, Swift: object storage, Cinder: block storage, Neutron: networking, Keystone:
identity service, Horizon: dashboard, Heat: orchestration

e APl >>dashboard
e Heat uses HOT YAML templates; important keys with sub-keys:

o heat_template_version , description , conditions

O parameter_groups . label, description, parameters, param name

o parameters : param name, type, label, description, default, hidden, constraints, immutable

O resources . resource id, type, properties, metadata, depends_on, update_policy, deletion_policy,
external_id, conditio

O outputs . param name, description, value, condition

KUBE

e containers run directly on host OS, with limited+prioritized and accounted access to resources (and visibility of
these resources is limited) with each container having it own rootfs

e Kubernetes/k8s is a platform for automating deployment, scaling, and management of containers; can run on
OpenStack

e master node / control plane: etcd (K/V storage of cluster state), APl server, scheduler, controller manager

e worker/k8s nodes / minions: kubelet (responsible for running state of each node), Kube proxy (routing etc.).
cAdvisor (metrics agent), overlay network (not part of k8s)

e cluster: set of machines where pods are deployed, managed, scaled

e pod: one or more containers, guaranteed to be co-located ("logical host"); basic unit of scheduling; lifecycle:
pending, running, succeeded/failed, unknown

e controller: reconciliation loop driving actual to desired cluster state

e service: set of pods working together; exposed via ClusterIP, NodePort, LoadBalancer, ExternalName; expose a
reliable networking endpoint (and keep track of the (ephemeral) pods behind them)

e label: k/v pairs, very mighty

e consistent object API, providing object metadata (name, UID, version, labels), spec (desired state), and status
(current state, read-only)

e container cluster management: robustness, deployment+maintenance w/o service interruption, optimize
usage/cost

e scheduling: placing containers on nodes; affinity (tight cooperation) or anti-affinity (redundancy)

e replication controller: replicas of pod definition; replaced by deployments

e deployments: rolling updates, rollbacks

¢ replica set: extension of replication controller, enforces desired state of running replicas of a set of pods

CMP I

e improve utilization by pooling physical resources (compute: CPU, RAM, caches, interrupts, timers, 1/0 etc.);
reduces cost, allows for scaling and on-demand

e simulation: model of the system, no direct link to actual system; emulation: approximate system behavior,
possibly with different implementation; virtualization: using parts of or the entire actual system

e emulation: allows for portability; e.g. QEMU

af://n34
af://n64
af://n111

e virtualization components/types: VMM/hypervisor; full-, para-, OS-level-, application-level- virt.; VM, VMI

e properties of env created by VMM: equivalence/fidelity (same behavior), resource control/safety (VMM in
complete control of virt. res), efficiency/performance (significant number of statements w/o VMM intervention)

e type I: VMM (baremetal hypervisor)

o +: performance, scalability, stability, no host OS to maintain
o -:limited hardware supported, not suitable for workstation

e type ll: host OS

o +:wider h/w compatibility, flexible deployments, on-demand start/stop, parallel to host OS, parallel VMMs
o -:host OS is a potential performance bottleneck, wider system-breach surface

e x86 uses rings 0-3 (most to least privileged); ring 0: async interrupt, syscall/trap, exception or illegal instruction
(page fault, div by 0)

e virtualizing x86 is hard b/c semantics of some instructions (e.g. reboot) is different when in ring 0 or not; instead
trap sensitive instructions + virtualize (using binary translation) their execution; guest is unaware of virt.

e AMD-V/Intel VT: privileged instructions running in a new CPU execution mode feature; no more need for binary
translation or para-virt.; aka HYM

e x86 MMU virt.: from virt virt to virt physical to host address by using shadow page table maintained by VMM;
again: can have hardware support obsoleting shadow page table

e Linux commands: vmstat, free, pmap, top, sar -B, /usr/bin/time, cat /proc/sys/vm/freepages, cat

/proc/meminfo

e full vs para virt: full: complete simulation of underlying hardware (type | & Il) + support for unmodified OS; para:
tell guest it's being virtualized

e pararequired a new interface between VMM and OS to virtualize sensitive instructions called hypercalls; OS
modifications required (swap in hypercalls); OS is run similar to a user land application with syscalls

e full virt. simplifies CPU, bot not other components -> para virt useful
e QEMU: full-system emulation, user-mode emulation, and virtualization (KVM, Xen)
e QEMU uses binary translation and SoftMMU

e KVM: kernel-based VM, default hypervisor in OpenStack; makes standard and advanced Linux features available
to guest

e KVM provides an interface to Linux kernel via a loadable kernel module, no virt/emulation (!)
e KVM integrates cgroups (control groups), resource scheduling, and network namespaces

e virsh ("virtual shell") uses libvirt + XML configs to creates VMs

e Linux cgroups control resource access using hierarchies (supporting multiple hierarchies simultaneously) and
subsystems (BLKIO, CPU, cpuacct, cpuset, devices, RAM, NET_CLS, NET_PRIO, NS); provide monitoring and are
dynamic and persistent

e used using mount -t cgroup -o subsystems name /some/dir and echo ing PIDs into files

e Linux namespace provide isolation (processes have their own isolated instance of global resource) and visibility
(change to global resource are visible to processes in that namespace, but not to others); often used for
containers

e chroot changes root directory of calling process

e Linux Native Container Management LXC uses cgroups, namespaces, chroot, and LSM&MAC for security;
enabled via kernel features

af://n190

e Docker features: portability, application-centric, build automation, versioning support, component reuse,
sharing, tools (CLI, REST API)

¢ when removing a Docker container, any state changes not persisted in storage disappear

e images (built using a Dockerfile; each instruction results in an image layer) are read-only templates to create a
container

e Docker uses a union mount to add read-only fs'es on top of the rootfs

e Docker commands: run -ditp, ps, inspect, stop, kill, rm

e Dockerfile: FROM, RUN, COPY, EXPOSE, CMD, ENTRYPOIONT

e envvars are used a lot, also for config and linking

STRG1

e cloud storage provides logical (network-available) storage abstracting a complex, distributed infrastructure;
separate storage service/deployment and block/object storage

o requirements: flexible volume management, multi-tenancy, thin-provisioning, accounting and user
policies, no operational downtime, privacy and security

e block storage: VM volumes, most basic apart from bare metal, requires fs as data access is using block arrays

e file is an OS abstraction over blocks

e Storage Area Network SAN: only block-level, no files, using iSCSI; storage device array is available over network
o formattable and mountable block devices; scale well; expensive (non-commodity h/w)

e Network attached storage NAS: have fs and offer file-based access
o "single boxes"; simple; less flexible due to abstraction layer over block storage

e data placement is handled transparently by storage system, using policies, and rebalanced

¢ data striping improves efficiency by factor N for N stripes; failure of any unit implies data loss

e data replication provides fault-tolerance using replicas or erasure coding (ZFS software RAID)

o divide data into m blocks; re-rencode into n > m blocks; rebuild data with m < k < n blocks
o storage efficiency: m/n (n — m redundant blocks = tolerable loss)
o e.g.radiz3 pool with 8 vdevs, m = 5,n = 8 has 5/8 = 62.5% efficiency, tolerating the loss of 3 vdevs

* durability ("data permanently lost") L/Y where Y is the number of years it takes to lose a fraction L of the data;
durability loss implies availability loss

o e.g. L =0.00000001% — 99.99999999%; when storing 10000 objects, lose 1071° x 10* = 107 objects
per year or 1 object every 108 years

e availability ("data not available") is a result of uptime; S3: 99.9%
e more general design principles: availability, scalability and efficiency, consistency

e CAP - Consistency, Availability, Partition Tolerance conjecture: a distributed computer system can provide at
most two of three guarantees; e.g. split brain: allow access and no consistency, disallow access and no
availability

o (C:ata certain instant of time, all nodes see the same data

o A:the system is able to process and reply to client requests

o P:the system remains operational even in case of failure of single components

o AC: available and consistent systems, can only be achieved if systems run on a single machine; e.g. non-
distributed DB

PA: available and partition-tolerant systems, may provide outdated data but clients “always” receive a reply
(e.g., DNS system)

(o]

af://n228

o PC: consistent and partition-tolerant systems, may stop replying to client requests, but provided data is
always consistent; e.g. flight booking system

e Cinder provides block storage; software infrastructure for volume management, supports local (directly
attached storage DAS) and remote volumes (SAN, NAS)

e compute hosts in OpenStack may or may not have local storage

e DAS: +: simple, performance; -: larger footprint on compute host, local storage on compute host (incl. RAID),
possibly less failure-resilient

e iSCSI provides block-level access over a network using a target and initiator; TPG = portal group from which
block devices are exposed; LUN = logical unit identifying block device on TPG

e ZFSis avery powerful local fs which includes COW-everything, transaction-everything, checksum-everything,
snapshots, cloning and uses a software-defined approach to manipulate storage resources; organize physical
disks into vdevs (mirror, raidz1/2/3), vdevs into pools, configure pool features and allocate volumes, expose
volumes at block-level/iSCSI or file-level/distributed fs

STRG2

e object storage has no multi-level hierarchical structure, only contains and objects, w/o nested containers i.e.
buckets instead of trees; suitable for unstructured data

e objectis a data blob with a unique name / ID, optionally with k/v metadata

e S3 APl is de-facto standard; CRUD / RESTful

e object may be a file, but doesn't have to be

¢ in OpenStack: Swift; distributed, eventually consistent, redundant, scales well, has ACLs, preserves integrity,
allows for replication, failure domains (regions, zones), swapping nodes w/o downtime

e Swift data is organized in flat account-container-object hierarchy and has three rings, storage, container, and
object

e Swift is behind a stateless proxy, which is responsible for API, HA+HP

e account server uses account ring to maintain a list of containers; same for container/container/objects and
object/object/object locations

e in the object server, there is one object ring per storage policy

e rings maintain data-partition-zone-device mapping

e devices are placed in different failure domains and partitions can be across one or more devices

e each partition in a ring is replicated according to a replica count (default: 3) which are balanced and dispersed
into different failure domains (given capacity) according to a device weight

e partition index = (hash(item path) % C) % N where c isthe number of bits kept from the hash (aka
partition power) and N the total number of partitions in the ring

e object rings (one per storage policy) allow for different levels of durability, performance, node grouping, and
storage implementations

e Swift & CAP: AP (might provide outdated data)

e Swift workflow follows CRUD/REST - POST (partial)/PUT (full)/GET/DELETE

e Ceph: unified object, block, file store on top of object-based system; reliable autonomic distributed object store
RADOS

e key components: monitor daemon MON, object storage device OSD, and meta data service MSD

e interfaces: native, object, block, file

e Ceph CRUSH - controlled replication under scalable hashing

STRG3

e AUFS (union fs) uses COW; for reading, uses existing (in lower layer) file; for write, copy-up file into layer (original
file is "hidden" and unmodified); delete: if only in topmost, remove else whiteout but don't modify lower layers

af://n326
af://n388

e ZFSfs is thinly-provisioned, on-demand allocation from zpool; snapshots are read-only space-efficient, point-in-
time copies, clones are read-write copies of snapshots

e ZFS can be used for Docker, too where each child layer is a ZFS clone based on a ZFS snapshot below it
e ZFS read: fast, even from deep layers

e ZFS write: on-demand space allocation, written into the container's writeable layer

e ZFS modify: allocate space for changed blocks, COW on writeable layer

e ZFS delete in lower layer: mask file/directory

e ZFS delete in writeable layer: free blocks, reclaimed by zpool

e storing data in writeable layer has disadvantages: non-persistence, difficult to extract, tight coupling to host,
storage driver to manage interaction

e alternatives for Docker: volumes, bind mounts, tmpfs

o volumes are stored as directories on host and can be shared among containers and exist independently of
containers

o binds are "shared folders" between host and container, very performant, unadvised by Docker

o tmpfs: high-speed, non-persistent e.g. secrets

e Docker Swarm is a "service"
NET1

e a DC has to connect sites and racks, and to the Internet

e internally, there are a lot challenges and solutions, none of which are ideal; link aggregation, ECMP, rack-to-rack,
L2 broadcast domains, spanning tree

e externally, multiple ingress and egress

e DCrequirements from operator perspective: robust, redundant, modular, heterogeneity, simple in terms of
scaling, flexible topology, different stakeholders, efficient, effective, isolate tenants

e standard technologies: L2 virtualization uses VLAN, (G)MPLS; VXLAN and GRE (both encapsulate protocols,
Ethernet or arbitrary, resp.)

e standard 802.3 (Ethernet) has no support for QoS, added by 802.1Q aka VLAN: logical subnet inside one (or
spread over multiple) L2 device(s)

e port-based VLANs hard-ware ports into subnets; simple, fast
 tagged VLANs add a VLAN-field to header, with 12 bits for the ID (212 = 4096)
o tagging on departure or arrival, either dynamic/remote (e.g. from policy server) or static/local

¢ one link connecting to L2 devices, is a trunk connecting trunk ports; trunk ports forward all frames, regardless
of VLAN ID (tag) and adds frame information (port-based)

e MPLS: multiprotocol label switching; forwards any frame based on a label, independent from Ethernet

o LSR: label switch routes; push/pop/swap labels
o LER: label edge router; ingress and egress

e General Routing Encapsulation GRE: logical tunnel where IP packets are encapsulated by an IP frame (IP-over-IP)
and followed by GRE header

¢ flat networks: private cloud scenario, full connectivity
e flat and private network: enterprise/campus with private and public domains

e multi-tenant and multi-tier: public clouds hosting multiple tenants; tenants require control over own network
topology

af://n433

[Configured by Nova Compute

TAP device g ymO 3 L2
| | ;em | ?uho |
veth pair
ml [

lore] | —

Port VLAN tag:2 :
Tenant flows are separated v :
by internally assigned VLAN 1D : :
T E iﬂt‘hfﬁeth 1 H
VLAN ID is converted with flow table
[Configured by L2 Agent dl_vian=101 = mod_vian_vid:1
[: dl_vlan=102 = mod_vlan_vid:2

"
"
"

Tenant flows are separated

by user defined VLANID | “-------reoeco- - ""'"”mem,mnmmmmu

dl_vian=1 => mod_vlan_vid:101
di_vlan=2 =* mod_vlan_vid:102

Physical L2 Switch | VHANLOL
for Private Network VLAN102

e OpenStack uses iptables

o chains: INPUT, OUTPUT, FORWARD
o policies: ACCEPT, DROP, REJECT, QUEUE, RETURN

NET2

e software defined networking SDN programs network behavior instead of configuring it; separates control and
data plane

e OpenFlow is an SDN protocol

¢ in packet switching networks, traffic flow, packet flow or network flow is a sequence of packets from a source
computer to a destination, which may be another host, a multicast group, or a broadcast domain

e TPCI/IP uniquely identifies a flow with: src+dest IP+port and L4 protocol; used for matching flows

¢ a flow table contains flow entries/flows, each with instructions, and action set, and a forwarding policy

e datapath consists of flow table(s), one group table, ingress/egress ports, channel to controller

e in OF, ports can be physical, local, or logical

e actions include: write (output port, drop, group id, push/pop tag (-> MPLS/VLAN), set field), clear, meter (meter
band(s), each defines rate, band type, counters, args), goto-table, write metadata

e OpenDayLight is an SDN framework using OpenvSwitch OVS a a virtual and intelligent bridge

e in OpenStack: Neutron is SDN

NET3

e OpenStack has two types of networks

o provider: integrated into DC network infrastructure, using preconfigured VLANSs; L2-only; no self-service by
user, admin-only; higher performance since h/w; relies on external L3
o self-service: flexible; higher abstraction than L2; user can L3 overlay networks; mostly SDN

af://n501
af://n533

¢ VLAN segmentation for isolation of traffic categories, admin tasks and/or of tenants
e In OpenStack, Neutron nodes run deployment-global networking logic, namespaces

e static tunnels: older, more stable; vxlan tunnels to all compute + controller nodes; might suffer from broadcast
storms

e dynamic tunnels: on-demand
e Neutron provides L3 services for self-service networks; inlcuding HA

e HA (high availability): load balancer in front of providers; services can be stateless/stateful, active/active (all
providers are providing; if stateful, share state; "degraded" mode until recovered) or active/passive (primary and
secondary; if stateful, migrate state)

o take-over: failover, failback (re-establish initial config), switchover (manual change of roles)

e keepalived is used for L3 HA using OVS and Virtual Router Redundancy Protocol (VRRP); keepalived provides
hooks for VRRP FSM

e HA can also be achieved with Distributed Virtual Routing
e Docker Engine: dockerd, REST API + CLI; beyond Docker Swarm or k8s

e Docker networking: default and user-defined ("provider and self-service") networks; between containers on
same host, between contains on different hosts, connectivity to Internet; by default: bridge, none, host

e complex Docker networks: bridge/overlay/MACVLAN/custom networks incl. container communication control,
IP allocation, DNS resolver

PERF1

e sys perf eval requires structured approach, has to cover entire system lifecycle, and knowledge across the board

e defines several activities in the different phases of the lifecycle (design, implementation, deployment,
provisioning, operation, disposal):

o define the System under Test (SUT); setting performance objectives; define performance characteristics
and models; performance analysis of development code; tests of software builds; benchmarking software
releases; PoC testing in the target environment; configuration optimization of the production
environment; monitoring and analysis of issues

e SUT approaches: models + simulation, or empirical investigation using emulation or production grade
implementation

e workload: load imposed onto the system

e perturbations: parallel processes on a single-core CPU

e metric: quantification of system behavior

e resulting performance: observed behavior

e |OPS: I/0 per second

e throughput: data per time or transactions/operations per time
e response time: time to complete

e latency: time spent waiting

e utilization: how busy a resource is; can be time or capacity based; time-based is usually displayed in top etc.;
time 1= capacity based

e saturation: degree to which a resource has queued work it cannot service; begins to occur at 100% utilization

e bottleneck: resource limiting overall sys perf

af://n581

e cache: fast storage buffering certain elements to accelerate 1/0 ops

e stats can be observation- or experiment-based

e metrics are often averaged out, hiding spikes; percentiles more useful

e not everything is necessarily Gaussian distributed; e.g. caches are bimodal (hits and misses)
e QoS (objective) vs QoE (subjective); need not imply one another

e caches can be cold, warm, or hot (hit ratio > 99%)

e resource (focus on utilization) vs workload (focus on requests, latency, completion) analysis
e problem statement is vital and should be done first

o What makes you think there is a performance problem?

o Has this system ever performed well?

o What has changed recently? (Software? Hardware? Load?)

o Can the performance degradation be expressed in terms of latency or runtime?
o Does the problem affect other people or applications?

o What is the environment; what software and hardware are used?

e workload characterization: method to identify issues due to the load applies; focusses on input (who, why,
what, how?)

e USE method: for every resource, check utilization, saturation, and errors

	CCP1
	CCI
	OSTK
	KUBE
	CMP I
	CMP II
	STRG1
	STRG2
	STRG3
	NET1
	NET2
	NET3
	PERF1

