
CCP1

CCP1
CCI
OSTK
KUBE
CMP I
CMP II
STRG1
STRG2
STRG3
NET1
NET2
NET3
PERF1

CCI

capital expenses / CAPEX: incurs when spending money to buy/repair/upgrade fixed/intangible assets cost
cannot be deducted

hardware, software, licenses

operational expenses / OPEX: ongoing cost for running a product/business/system

rented space, electricity, backup+recovery, audit, staff

total cost of ownership TCO = CAPEX + OPEX

ICT consumption models: stable, periodic busting, predictable busting, on/off, scheduled increase in capacity
(jump or smooth)

cloud: self-service, on-demand, elasticity, resource pooling / multi-tenancy, pay-as-you-go, broad network
access

af://n0
af://n3

private cloud: single org; community cloud: specific group; public cloud: open use by general public; hybrid: any
combination

OSTK

OpenStack is IaaS

Nova: compute, Glance: images, Swift: object storage, Cinder: block storage, Neutron: networking, Keystone:
identity service, Horizon: dashboard, Heat: orchestration

API >> dashboard

Heat uses HOT YAML templates; important keys with sub-keys:

heat_template_version , description , conditions
parameter_groups : label, description, parameters, param name
parameters : param name, type, label, description, default, hidden, constraints, immutable
resources : resource id, type, properties, metadata, depends_on, update_policy, deletion_policy,
external_id, conditio

outputs : param name, description, value, condition

KUBE

containers run directly on host OS, with limited+prioritized and accounted access to resources (and visibility of
these resources is limited) with each container having it own rootfs
Kubernetes/k8s is a platform for automating deployment, scaling, and management of containers; can run on
OpenStack
master node / control plane: etcd (K/V storage of cluster state), API server, scheduler, controller manager
worker/k8s nodes / minions: kubelet (responsible for running state of each node), Kube proxy (routing etc.).
cAdvisor (metrics agent), overlay network (not part of k8s)
cluster: set of machines where pods are deployed, managed, scaled
pod: one or more containers, guaranteed to be co-located ("logical host"); basic unit of scheduling; lifecycle:
pending, running, succeeded/failed, unknown
controller: reconciliation loop driving actual to desired cluster state
service: set of pods working together; exposed via ClusterIP, NodePort, LoadBalancer, ExternalName; expose a
reliable networking endpoint (and keep track of the (ephemeral) pods behind them)
label: k/v pairs, very mighty
consistent object API, providing object metadata (name, UID, version, labels), spec (desired state), and status
(current state, read-only)
container cluster management: robustness, deployment+maintenance w/o service interruption, optimize
usage/cost
scheduling: placing containers on nodes; affinity (tight cooperation) or anti-affinity (redundancy)
replication controller: replicas of pod definition; replaced by deployments
deployments: rolling updates, rollbacks
replica set: extension of replication controller, enforces desired state of running replicas of a set of pods

CMP I

improve utilization by pooling physical resources (compute: CPU, RAM, caches, interrupts, timers, I/O etc.);
reduces cost, allows for scaling and on-demand

simulation: model of the system, no direct link to actual system; emulation: approximate system behavior,
possibly with different implementation; virtualization: using parts of or the entire actual system

emulation: allows for portability; e.g. QEMU

af://n34
af://n64
af://n111

virtualization components/types: VMM/hypervisor; full-, para-, OS-level-, application-level- virt.; VM, VMI

properties of env created by VMM: equivalence/fidelity (same behavior), resource control/safety (VMM in
complete control of virt. res), efficiency/performance (significant number of statements w/o VMM intervention)

type I: VMM (baremetal hypervisor)

+: performance, scalability, stability, no host OS to maintain
-: limited hardware supported, not suitable for workstation

type II: host OS

+: wider h/w compatibility, flexible deployments, on-demand start/stop, parallel to host OS, parallel VMMs
-: host OS is a potential performance bottleneck, wider system-breach surface

x86 uses rings 0-3 (most to least privileged); ring 0: async interrupt, syscall/trap, exception or illegal instruction
(page fault, div by 0)

virtualizing x86 is hard b/c semantics of some instructions (e.g. reboot) is different when in ring 0 or not; instead
trap sensitive instructions + virtualize (using binary translation) their execution; guest is unaware of virt.

AMD-V/Intel VT: privileged instructions running in a new CPU execution mode feature; no more need for binary
translation or para-virt.; aka HVM

x86 MMU virt.: from virt virt to virt physical to host address by using shadow page table maintained by VMM;
again: can have hardware support obsoleting shadow page table

Linux commands: vmstat, free, pmap, top, sar -B, /usr/bin/time, cat /proc/sys/vm/freepages, cat

/proc/meminfo

full vs para virt: full: complete simulation of underlying hardware (type I & II) + support for unmodified OS; para:
tell guest it's being virtualized

para required a new interface between VMM and OS to virtualize sensitive instructions called hypercalls; OS
modifications required (swap in hypercalls); OS is run similar to a user land application with syscalls

full virt. simplifies CPU, bot not other components -> para virt useful

QEMU: full-system emulation, user-mode emulation, and virtualization (KVM, Xen)

QEMU uses binary translation and SoftMMU

KVM: kernel-based VM, default hypervisor in OpenStack; makes standard and advanced Linux features available
to guest

KVM provides an interface to Linux kernel via a loadable kernel module, no virt/emulation (!)

KVM integrates cgroups (control groups), resource scheduling, and network namespaces

virsh ("virtual shell") uses libvirt + XML configs to creates VMs

CMP II

Linux cgroups control resource access using hierarchies (supporting multiple hierarchies simultaneously) and
subsystems (BLKIO, CPU, cpuacct, cpuset, devices, RAM, NET_CLS, NET_PRIO, NS); provide monitoring and are
dynamic and persistent
used using mount -t cgroup -o subsystems name /some/dir and echo ing PIDs into files
Linux namespace provide isolation (processes have their own isolated instance of global resource) and visibility
(change to global resource are visible to processes in that namespace, but not to others); often used for
containers
chroot changes root directory of calling process
Linux Native Container Management LXC uses cgroups, namespaces, chroot, and LSM&MAC for security;
enabled via kernel features

af://n190

Docker features: portability, application-centric, build automation, versioning support, component reuse,
sharing, tools (CLI, REST API)
when removing a Docker container, any state changes not persisted in storage disappear
images (built using a Dockerfile; each instruction results in an image layer) are read-only templates to create a
container
Docker uses a union mount to add read-only fs'es on top of the rootfs
Docker commands: run -ditp, ps, inspect, stop, kill, rm

Dockerfile: FROM, RUN, COPY, EXPOSE, CMD, ENTRYPOIONT
env vars are used a lot, also for config and linking

STRG1

cloud storage provides logical (network-available) storage abstracting a complex, distributed infrastructure;
separate storage service/deployment and block/object storage

requirements: flexible volume management, multi-tenancy, thin-provisioning, accounting and user
policies, no operational downtime, privacy and security

block storage: VM volumes, most basic apart from bare metal, requires fs as data access is using block arrays

file is an OS abstraction over blocks

Storage Area Network SAN: only block-level, no files, using iSCSI; storage device array is available over network

formattable and mountable block devices; scale well; expensive (non-commodity h/w)

Network attached storage NAS: have fs and offer file-based access

"single boxes"; simple; less flexible due to abstraction layer over block storage

data placement is handled transparently by storage system, using policies, and rebalanced

data striping improves efficiency by factor for stripes; failure of any unit implies data loss

data replication provides fault-tolerance using replicas or erasure coding (ZFS software RAID)

divide data into blocks; re-rencode into blocks; rebuild data with blocks
storage efficiency: (redundant blocks = tolerable loss)
e.g. radiz3 pool with 8 vdevs, has efficiency, tolerating the loss of 3 vdevs

durability ("data permanently lost") where is the number of years it takes to lose a fraction of the data;
durability loss implies availability loss

e.g. ; when storing objects, lose objects
per year or 1 object every years

availability ("data not available") is a result of uptime; S3: 99.9%

more general design principles: availability, scalability and efficiency, consistency

CAP - Consistency, Availability, Partition Tolerance conjecture: a distributed computer system can provide at
most two of three guarantees; e.g. split brain: allow access and no consistency, disallow access and no
availability

C: at a certain instant of time, all nodes see the same data
A: the system is able to process and reply to client requests
P: the system remains operational even in case of failure of single components
AC: available and consistent systems, can only be achieved if systems run on a single machine; e.g. non-
distributed DB
PA: available and partition-tolerant systems, may provide outdated data but clients “always” receive a reply
(e.g., DNS system)

af://n228

PC: consistent and partition-tolerant systems, may stop replying to client requests, but provided data is
always consistent; e.g. flight booking system

Cinder provides block storage; software infrastructure for volume management, supports local (directly
attached storage DAS) and remote volumes (SAN, NAS)

compute hosts in OpenStack may or may not have local storage

DAS: +: simple, performance; -: larger footprint on compute host, local storage on compute host (incl. RAID),
possibly less failure-resilient

iSCSI provides block-level access over a network using a target and initiator; TPG = portal group from which
block devices are exposed; LUN = logical unit identifying block device on TPG

ZFS is a very powerful local fs which includes COW-everything, transaction-everything, checksum-everything,
snapshots, cloning and uses a software-defined approach to manipulate storage resources; organize physical
disks into vdevs (mirror, raidz1/2/3), vdevs into pools, configure pool features and allocate volumes, expose
volumes at block-level/iSCSI or file-level/distributed fs

STRG2

object storage has no multi-level hierarchical structure, only contains and objects, w/o nested containers i.e.
buckets instead of trees; suitable for unstructured data
object is a data blob with a unique name / ID, optionally with k/v metadata
S3 API is de-facto standard; CRUD / RESTful
object may be a file, but doesn't have to be
in OpenStack: Swift; distributed, eventually consistent, redundant, scales well, has ACLs, preserves integrity,
allows for replication, failure domains (regions, zones), swapping nodes w/o downtime
Swift data is organized in flat account-container-object hierarchy and has three rings, storage, container, and
object
Swift is behind a stateless proxy, which is responsible for API, HA+HP
account server uses account ring to maintain a list of containers; same for container/container/objects and
object/object/object locations
in the object server, there is one object ring per storage policy
rings maintain data-partition-zone-device mapping
devices are placed in different failure domains and partitions can be across one or more devices
each partition in a ring is replicated according to a replica count (default: 3) which are balanced and dispersed
into different failure domains (given capacity) according to a device weight
partition index = (hash(item path) % C) % N where C is the number of bits kept from the hash (aka

partition power) and N the total number of partitions in the ring
object rings (one per storage policy) allow for different levels of durability, performance, node grouping, and
storage implementations
Swift & CAP: AP (might provide outdated data)
Swift workflow follows CRUD/REST - POST (partial)/PUT (full)/GET/DELETE
Ceph: unified object, block, file store on top of object-based system; reliable autonomic distributed object store
RADOS
key components: monitor daemon MON, object storage device OSD, and meta data service MSD
interfaces: native, object, block, file
Ceph CRUSH - controlled replication under scalable hashing

STRG3

AUFS (union fs) uses COW; for reading, uses existing (in lower layer) file; for write, copy-up file into layer (original
file is "hidden" and unmodified); delete: if only in topmost, remove else whiteout but don't modify lower layers

af://n326
af://n388

ZFS fs is thinly-provisioned, on-demand allocation from zpool; snapshots are read-only space-efficient, point-in-
time copies, clones are read-write copies of snapshots

ZFS can be used for Docker, too where each child layer is a ZFS clone based on a ZFS snapshot below it

ZFS read: fast, even from deep layers

ZFS write: on-demand space allocation, written into the container's writeable layer

ZFS modify: allocate space for changed blocks, COW on writeable layer

ZFS delete in lower layer: mask file/directory

ZFS delete in writeable layer: free blocks, reclaimed by zpool

storing data in writeable layer has disadvantages: non-persistence, difficult to extract, tight coupling to host,
storage driver to manage interaction

alternatives for Docker: volumes, bind mounts, tmpfs

volumes are stored as directories on host and can be shared among containers and exist independently of
containers
binds are "shared folders" between host and container, very performant, unadvised by Docker
tmpfs: high-speed, non-persistent e.g. secrets

Docker Swarm is a "service"

NET1

a DC has to connect sites and racks, and to the Internet

internally, there are a lot challenges and solutions, none of which are ideal; link aggregation, ECMP, rack-to-rack,
L2 broadcast domains, spanning tree

externally, multiple ingress and egress

DC requirements from operator perspective: robust, redundant, modular, heterogeneity, simple in terms of
scaling, flexible topology, different stakeholders, efficient, effective, isolate tenants

standard technologies: L2 virtualization uses VLAN, (G)MPLS; VXLAN and GRE (both encapsulate protocols,
Ethernet or arbitrary, resp.)

standard 802.3 (Ethernet) has no support for QoS, added by 802.1Q aka VLAN: logical subnet inside one (or
spread over multiple) L2 device(s)

port-based VLANs hard-ware ports into subnets; simple, fast

tagged VLANs add a VLAN-field to header, with 12 bits for the ID ()

tagging on departure or arrival, either dynamic/remote (e.g. from policy server) or static/local

one link connecting to L2 devices, is a trunk connecting trunk ports; trunk ports forward all frames, regardless
of VLAN ID (tag) and adds frame information (port-based)

MPLS: multiprotocol label switching; forwards any frame based on a label, independent from Ethernet

LSR: label switch routes; push/pop/swap labels
LER: label edge router; ingress and egress

General Routing Encapsulation GRE: logical tunnel where IP packets are encapsulated by an IP frame (IP-over-IP)
and followed by GRE header

flat networks: private cloud scenario, full connectivity

flat and private network: enterprise/campus with private and public domains

multi-tenant and multi-tier: public clouds hosting multiple tenants; tenants require control over own network
topology

af://n433

OpenStack uses iptables

chains: INPUT, OUTPUT, FORWARD
policies: ACCEPT, DROP, REJECT, QUEUE, RETURN

NET2

software defined networking SDN programs network behavior instead of configuring it; separates control and
data plane
OpenFlow is an SDN protocol
in packet switching networks, traffic flow, packet flow or network flow is a sequence of packets from a source
computer to a destination, which may be another host, a multicast group, or a broadcast domain
TPCI/IP uniquely identifies a flow with: src+dest IP+port and L4 protocol; used for matching flows
a flow table contains flow entries/flows, each with instructions, and action set, and a forwarding policy
datapath consists of flow table(s), one group table, ingress/egress ports, channel to controller
in OF, ports can be physical, local, or logical
actions include: write (output port, drop, group id, push/pop tag (-> MPLS/VLAN), set field), clear, meter (meter
band(s), each defines rate, band type, counters, args), goto-table, write metadata
OpenDayLight is an SDN framework using OpenvSwitch OVS a a virtual and intelligent bridge
in OpenStack: Neutron is SDN

NET3

OpenStack has two types of networks

provider: integrated into DC network infrastructure, using preconfigured VLANs; L2-only; no self-service by
user, admin-only; higher performance since h/w; relies on external L3
self-service: flexible; higher abstraction than L2; user can L3 overlay networks; mostly SDN

af://n501
af://n533

VLAN segmentation for isolation of traffic categories, admin tasks and/or of tenants

In OpenStack, Neutron nodes run deployment-global networking logic, namespaces

static tunnels: older, more stable; vxlan tunnels to all compute + controller nodes; might suffer from broadcast
storms

dynamic tunnels: on-demand

Neutron provides L3 services for self-service networks; inlcuding HA

HA (high availability): load balancer in front of providers; services can be stateless/stateful, active/active (all
providers are providing; if stateful, share state; "degraded" mode until recovered) or active/passive (primary and
secondary; if stateful, migrate state)

take-over: failover, failback (re-establish initial config), switchover (manual change of roles)

keepalived is used for L3 HA using OVS and Virtual Router Redundancy Protocol (VRRP); keepalived provides
hooks for VRRP FSM

HA can also be achieved with Distributed Virtual Routing

Docker Engine: dockerd, REST API + CLI; beyond Docker Swarm or k8s

Docker networking: default and user-defined ("provider and self-service") networks; between containers on
same host, between contains on different hosts, connectivity to Internet; by default: bridge, none, host

complex Docker networks: bridge/overlay/MACVLAN/custom networks incl. container communication control,
IP allocation, DNS resolver

PERF1

sys perf eval requires structured approach, has to cover entire system lifecycle, and knowledge across the board

defines several activities in the different phases of the lifecycle (design, implementation, deployment,
provisioning, operation, disposal):

define the System under Test (SUT); setting performance objectives; define performance characteristics
and models; performance analysis of development code; tests of software builds; benchmarking software
releases; PoC testing in the target environment; configuration optimization of the production
environment; monitoring and analysis of issues

SUT approaches: models + simulation, or empirical investigation using emulation or production grade
implementation

workload: load imposed onto the system

perturbations: parallel processes on a single-core CPU

metric: quantification of system behavior

resulting performance: observed behavior

IOPS: I/O per second

throughput: data per time or transactions/operations per time

response time: time to complete

latency: time spent waiting

utilization: how busy a resource is; can be time or capacity based; time-based is usually displayed in top etc.;
time != capacity based

saturation: degree to which a resource has queued work it cannot service; begins to occur at 100% utilization

bottleneck: resource limiting overall sys perf

af://n581

cache: fast storage buffering certain elements to accelerate I/O ops

stats can be observation- or experiment-based

metrics are often averaged out, hiding spikes; percentiles more useful

not everything is necessarily Gaussian distributed; e.g. caches are bimodal (hits and misses)

QoS (objective) vs QoE (subjective); need not imply one another

caches can be cold, warm, or hot (hit ratio > 99%)

resource (focus on utilization) vs workload (focus on requests, latency, completion) analysis

problem statement is vital and should be done first

What makes you think there is a performance problem?
Has this system ever performed well?
What has changed recently? (Software? Hardware? Load?)
Can the performance degradation be expressed in terms of latency or runtime?
Does the problem affect other people or applications?
What is the environment; what software and hardware are used?

workload characterization: method to identify issues due to the load applies; focusses on input (who, why,
what, how?)

USE method: for every resource, check utilization, saturation, and errors

	CCP1
	CCI
	OSTK
	KUBE
	CMP I
	CMP II
	STRG1
	STRG2
	STRG3
	NET1
	NET2
	NET3
	PERF1

