
Cloud Computing 2

Cloud Computing 2
CC2I
PAAS
CNA1
CNA2
CNA3
ARCH
RUNT
CSRV
DVOP1
DVOP2
DVOP3
AMON
CECO

CC2I

capital expenses / CAPEX: incurs when spending money to buy/repair/upgrade fixed/intangible assets cost
cannot be deducted

hardware, software, licenses
operational expenses / OPEX: ongoing cost for running a product/business/system

rented space, electricity, backup+recovery, audit, staff
total cost of ownership TCO = CAPEX + OPEX

Definition of PaaS: The capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage or control the underlying cloud infrastructure
including network, servers, operating systems, or storage, but has control over the deployed applications and
possibly configuration settings for the application-hosting environment

PaaS: OPEX, standardized envs, continous improvment, supports agile org and dev, provider takes full
responsibility for platform

there are different types of PaaS: application for multiple runtimes and frameworks (OpenShift); integration;
DB; business process management; business analytics; mobile backend; in-memory datagrid etc.; some are
domain specific (e.g. healthcare, robotics etc.)

low lock-in: UBM Bluemix, Pivotal, Swisscom, OpenShift etc; high lock-in: Microsoft Azure, Google App Engine,
Heroku etc.

cloud: self-service, on-demand, elasticity, resource pooling / multi-tenancy, pay-as-you-go, broad network
access

af://n0
af://n3

PAAS

Swisscom marketing lecture

CNA1

benefits of cloud computing: improve time-to-market; optimize cost

drawbacks: exposure to failures (commodity h/w); performance issues (resource pooling)

avoid both under- and over-provisioning

life-cycle: design -> implementation -> deployment -> provisioning -> operation & runtime management ->
disposal

A cloud-native app is optimized for running in the cloud to exploit the economic value proposition of cloud
computing whereas each phase in the life-cycle has to be adopted and optimized for a cloud env. Typically, such
an app is designed a distributed fashion.

arch: designed for scalability and resilience
org: devops, agile teams
process: CI/CD

SOA: service-oriented architectre; think in terms of services and service-based deployment and outcomes

standardized protocols, abstraction loose coupling, reusability, composability, stateless, discoverable
microservices: SOA style; many small services, each its own process, lightweight communication, built around
business capabilities, independently deployable, minimal and centralized management

Conway's law: Any organization that designs a system (defined broadly) will produce a design whose structure
is a copy of the organization's communication structure.

Twelve Factor App

1. Codebase: always in VCS, only one codebase with many deploys each with same codebase, but different
versions in each deploy

2. Dependencies: explicitly declared in a manifest and deps are isolated
3. Config: = what is not the same in every deploy/env (creds, resource handles etc.); stored in the env itself

via env vars; strict separation of config from code; use env vars and not files as not to check them into VCS

af://n39
af://n42

4. Backing services: = a backing service consumed over the net as port of its normal operation; code doesn't
distinguish between local and 3rd party svcs; (de-)attachable at any time w/o changing code

5. Build, release, run: strictly separate build and run; no code changes at runtime (no way to back-
propagate); builds initiated by devs, runtime automatically (reboot, process restart etc.)

6. Processes: stateless and share-nothing; don't assume cache exists; persistent date in a stateful backing
service; sticky sessions should not be used instead use Redis or memcached w/ expiry

7. Port binding: completely self-contained and not relying on runtime injection of a webserver; export HTTP
server and bind to a port

8. Concurrency: scale out processes horizontally and independently for each proc type (array of types and
number is the process formation)

9. Disposability: maximize robustness w/ fast startup and graceful shutdown; start/stop at any time w/o lead
time; on SIGTERM, free resources, unsub, release locks etc.; also robust against sudden death (h/w failure)

10. dev/prod parity: CI/CD relies on dev, staging, prod being as similar as possible; avoid gaps between dev
and prod (time gap: fast release; personnel gap: dev/ops, tools: same tools for dev and prod)

11. Logs: treat as event streams, all running procs log; the app isn't concern with routing/storing its log stream
instead aggregated by platform for indexing/analysis/alerting

12. Admin processes: admin/management tasks (e.g. DB migration) as one-off procsw/ same release,
codebase, config, deps etc.; shouldn't be done by app in startup phase

CNA2

app is a CNA if it implements cloud patterns: service registry, circuit breaker, load balancer, API gateway,
endpoint monitoring etc.

a service has: (business) functionality; config space; interface, protocol, information mode; operational features
and reqs; 0-N instances and their respective state

a service instance is an instantiation of a service: has a state (functional and operational)

service registry maintains state information of service instances: maps services to service instances; how to
reach a service instance; how to use/talk to it; and its state; register initial state and maintain it until disposal

Netflix Eureka: REST-based, Java, service registration & lookup, replication of server configs, easy integration w/
Spring, actions: register,renew,cancel,getRegistry

etcd: distributed KVS, run as HA cluster, uses Raft, data expiry, notification, shallow data structure, maps keys
into folder, actions: read,write,listen

circuit breaker: deals with unavailable/unresponsive services (down, slow net, overloaded etc.); CNA should be
able to handle such unreliability with minimal influence on it

consumer: detect failure fast, temporary request hold, do not block indefinitely, allow for reaction from
invoker
provider: limit requests to allow for recovery
acts as an intermediary for mediation between consumer and provider; open/closed/half-open
closed: passes every request; on failure, increase failure counter; failure counter above threshold -> open;
reset counter after timeout
open: immediately return error; after some time, change to half-open OR sporadically ping to check health
half-open: pass some request, error on most requests as not to overwhelm a recovering service; count
successful requests and change to closed after passing a threshold; on failure, immediately change to
open

load balancer: elasticity when scaling; CNA should scale with load, either horizontal (parallel resources / service
instances; preferred) or vertical (CPU, RAM etc.); distribute load to a service instance pool

server-side (e.g. HAProxy) in separate process, shared by clients and often by multiple services
client-side as lib in the client in same process, client decides which instance to connect to, requires registry

af://n122

distribution according to fairness, load, speed, economics; alogs include round-robin (fair), least-
connection (performance), source (stickiness)

API Gateways: consistent presentation to consumers; a CNA should provide a clear, consistent interface, not
exposing internal structure

approach: gateway service providing one unified interface, forward requests to respective internal service,
facade pattern
advanced: client-specific variants; aggregate responses from concurrent requests; convert protocols

endpoint monitoring: track operational status; proc might be running, but app could be crashed/stack; CNA
implements functional checks and provides interface for specific metrics -> external tools gather and analyze
metrics

typical checks: proc status (resource consumption load etc.); check presence of external backing svc;
measure response time; check SSL expiry; valid HTTP response code; check content of response

Queue load-leveling: deal with variable load levels; random load and random arrival of requests, load peaks;
implement a queue to smoothen requests; policing/droppping requests during excessive peaks

competing consumers/producers: provide elasticity; implement message queue and buffer + distribute to svc
instance in pool; enable async requests and variable amount of requests

event-sourcing: track state and provide transactional features in a highly distributed system; store event stream
to then update component state (materialized views); recreate states in the past by replaying even stream

eventual consistency for transactional data; full audit trails and history
Command query response segregation (CQRS): optimize for read and write ops; separate paths for read and
write ops; write/commands modify model/state; read/query provide data from separate, read-optimized
models; overload shouldn't affect other path; often combined with event sourcing

easier to implement (single concern); independent, demand-based scaling

CNA3

message passing: integral part of any distributed application; CNA heavily relies upon app-level messaging

sync/async communction: blocking/non-blocking; uni-/bi-directional: one-way, e.g. UDP / onward+return over
same channel, e.g. TCP

unicast: one sender to one receiver; multicast: one sender to many receivers; anycast: one sender to any
receiver; broadcast: one sender to all receivers

Channels, also known as queues, are logical pathways to transport messages. A channel behaves like a
collection of messages, but one that is magically shared across multiple computers and can be used
concurrently by multiple applications.

message-oriented middleware (MoM) to facilitate communication: abstraction of communication layer;
implement one or more channel patterns; support industry standard(s) of messaging; allow for language- and
platform-independent dev

messaging channel patterns: point-to-point; pub-sub; datatype (one channel only has one data type); dead
letter (bad/undelivered/erroneous messages); guaranteed delivery (uses built-in data store for persistence until
delivery)

MoM classification: brokered (choreographed by well-known server i.e. broker; every app connected to central
broker; broker can become bottleneck; message passing overhead; e.g. RabbitMQ) vs brokerless (peer-to-peer;
often allow for entity (e.g. pubs, topics etc.) discovery; distributed caching for reliable delivery; e.g. DDS,
ZeroMQ)

AMQP: binary application layer protocol; supports flow-controlled, message-oriented comm; guarantees: at
most once, at least once, exactly once; basic data unit: frame

af://n214

layered model: messaging (one or more frames, messaging capabilities), transport/framing (defines
connection behavior, security; framing protocol for formatting and encoding), net transport layer (any
reliable stream transport protocol e.g. TCP, pipes)
frame: header: 8 bytes (size, type, channel, etc.); extended header: depends on frame type; frame body:
format depends on the frame type
frame types: protocol header (establish new connection), connection header (content properties and
timestamp), content body (actual payload; default limit 131 KB; payload can be split across multiple
frames); method frame (RPC req/res; AMQP uses RPC pattern for nearly all communication), heartbeat
(sent by broker; if no response, disconnect)
AMQP messaging defines structure: bare and annotated part; bare: immutable part from sender to
receiver (properties can be used for routing, filtering); annotated: can be used, changes by intermediaries
flow control: supported at three levels: system level (during session setup; negotiate maximum frame
size), sender side (leaky bucket), receiver side (maximum rate of accepting messages)
entities: nodes (responsible from storing/delivering messages; addressable; organized
flat/hierarchical/graphical; can be brokers/queues/senders/receivers/...), containers (container is an
application; all nodes live in a container; e.g. client w/ its consumers or broker w/ its storage entities)
connection: full duplex, reliably ordered sequence of frames between containers; has one or more
channels
session: two correlated, unidirectional channels to form a bidirectional, sequential conversation; single
connection may have multiple, simultaneously active sessions
link: unidirectional route between 2 notes; 1 link must belong to only 1 session; session may have multiple
links

Simple/Streaming Text Oriented Messaging Protocol STOMP: async text messaging based on frames (command;
optional headers; optional body) using HTTP with mediation server between client and server); assumes 2-way
streaming net proto e.g. TCP; client can be a producer (SEND) or consumer (SUBSCRIBE)

MQ Telemetry Transport (MQTT); simple, TCP based async pub-sub binary messaging proto using a broker; ideal
for low-power, low-bandwidth; QoS 0/1/2 (at most once/at least once/exactly once) ensured by broker; ack
messages

other ptotos: XMPP (XML-based, no QoS, highly decentralized); CoAP (by ARM, web transfer for lossy envs)

RabbitMQ (= broker) support AMQP, STOMP, MQTT etc.; producers publish to broker, consumed by subscribed
consumers; has many exchanges and queues which are bound to each other by config

exchanges: messages are sent to exchanges, not queues; producer sends to exchange -> exchange
receives and routes msg (based on msg attrs and queue bindings) -> msg stay in queue until handled ->
consumed and handled by consumer
4 routing types: direct (exact match of routing keys), fanout (to all connected queues in exchange), topic
(wildcard match and binding-specified patterns), headers (msg header attrs)
3 persistence types: durable (across broker restart), exclusive (only one attachable consumer; queue is
deleted when consumer leaves), auto-delete (if no consumer, queue is deleted)

Data Distribution Service (DDS) is a standard for distributed apps to use Data Centric Pub-Sub (DCPS) comm
mechanisms; supports unicast, multicast, multicast reversed, broadcast; many QoS params; allows for different
consumption and generation rates; content-based filtering; suited for IoT

fully distributed: pub and sub are dynamically distributed, topic-based discovery, no central point of
failure
domain (basic construct binding apps together) with domain participants (allows access to domain & QoS)
data writers and publishes: publish data into domain; pubs group writers
data readers and subscribers: access point for app; notif via callback, polling; subs group readers
topic: unique within domain; name and type

ARCH

af://n309

PaaS functional separation of concerns:

operations: availability; performance: deploy, provision, monitor, scale PaaS components
core (focus of most application-Paas / aPaaS): application: stage, run, schedule, scale, health; backing
service: marketplace, provision, bind, manage; networking: routes, domains, load-balancer, dns;
monitoring: application logs, metrics, events; multitenancy: users, organization, project/space, quota
extended (left to 3rd parties): app model: composite application model / management; app life-cycle:
CI/CD pipelines, deployment tools; app testing: complex testing environments; app analytics: usage,
performance, visualization

PaaS generic architectural components:

runtime management: creation/caching/scheduling/placement/disposal of runtimes (VM, container);
manages individual app instances; metadata, images stored in persistent storage
net/router/load balancer: handles all TCP/HTTP and routes incoming to component; maintains distributed
routing state; often after SSL termination
cloud controller: mgmt REST API; manages app lifecycle incl. state transitions
health manager: monitors app state, number of instances, bound services; compare intended/actual
state; corrective actions
messaging system / bus: central comm sys for internal comm; pub-sub based; very self-protective
(backbone of whole system)
backing svcs / svc broker: backing svc marketplace; provision svc instances; un/bind svc to app; svc broker
API
log aggregation, event/metrics collectors: aggregate app logs; emit system events (app/instance state;
scaling); emits metrics (usage, uptime, traffic)
ops supports, mgmt sys: access controler (multi-tenancy, user auth/auth); rating, charging, billing

design & arch principles: loose coupling, event-driven, idempotent, async, eventually consistent, language
independent; declarative instead of imperative; cattle vs pets; open vs closed; ctrl loops; legacy compatible

arch reqs: no single point of of failure (redundant comps); distributed state (no central DB); self-healing;
horizontal scaling; dynamically discoverable comps; loose coupling (launch in any order), distr. comps; monitor
comps using e.g. HTTP endpoints

OpenShift: based on k8s for container mgmt (done by master); Docker nodes run apps; support multi-tenancy,
has build tooling, service layer: persistent storage: volumes (blk strg) mounted on containers (NFS, iSCSI,
Gluster, Ceph); net is tenant-based isolated, several router plugins/strategies

CloudFoundry: container runtime (HA, multi-zone, cluster scaling, VM healing, rolling updates; managed by
BOSH), application runtime (elastic runtime env for CNA, focus on app, open service broker integration,
multitenant; managed by Diego), BOSH (lifecycle automation tool for complex distr sys; IaaS-agnostic; deploy
monitor on IaaS or bare metal; supports scaling, rolling updates; health mgmt of VMs)

Runtime based on Diego as Container Management System: Diego Brain(s) for management, Diego Cells
for running application (Garden/runC.io based)
Cloud-Controller: Provides API, Controls the application lifecycle (with Diego & buildpacks), Manages
Backing Services (Marketplace /Service Brokers), Maintain Multitenancy (Org, spaces, users, roles, services)
Storage & Messaging: Consul for long living metadata (service-registry, dns, locks), Diego BBS (Bulletin
Board System) for real-time state (cluster, processes), BlobStore (Filesystem, S3) to store images,
BuildPacks, NATS for lightweight messaging between components
Services: Service Marketplace and Service-Broker to provision, bind and destroy Backing-Services

Diego is independent of container tech; supports multiple proc types (app, batch, streaming, computation;
either task or long running proc (LRP)); distr health mgmt; auction-based scheduler; up to k's of conts

separation of concerns: rep (API for cell, lifecycle mgmt of task/LRP), executor (runs procs based on
recipes), garden (API for container runt), runtime backend (actual container runt impl)

components: brain (master; auctioneer, converger); cells (executor nodes with above concerns; net,
metrics, logging); bulletin board system BBS (database for state; etcd for short-term / actual state, SQL for
long-term / desire state); access / VM (external access)
auctions (types: task, lrp-start, lrp-stop): 1,. BBS is asking the Brain-Auctioneer to start/stop a specific
number of Tasks/LRPs, 2. Brain-Auctioneer is asking the Cell-Reps about current capacity (and what they
run), 3. Cell-Reps proactively send a bid to start/stop instances, 4. Auctioneer uses Reps response to make
a placement decision, 5. Reps winning the Auction will start/stop the instances
lifecycle (binaries): 3 components: builder, launcher, healthcheck

RUNT

os-level virt (above) recap: set of procs called container; container runs on host/guest OS using cgroups,
namespaces, chroot, LSM (Linux Security Modules)

focus on containers instead of machines shifts ops from machine to app; benefits: no worrying about HW/OS,
rollout new HW/updates easier, telemetry tied to app instead of HW

runtime env: isolation (Linux stuff) + contents (OS, runt, middleware, frameworks, app) + procs (start/stop,
watchdog, logger)

runtime = component executing the application, e.g. Node/PHP interpreter or JVM, .NET Core
typically built from a base image w/ OS-dependent components (BootFS, kernel etc.; often also the
runtime)
application dependent components (middleware, frameworks, libs, app code etc.) are added dynamically

staging = packaging app in runt env: resolve runt deps, automated setup and config of runt/middleware
frameworks/monitoring, compilation, packaging; CloudFoundry uses buildpacks for this, alternatives are
Dockerfiles, or source-to-image (s2i; also creates Docker)

af://n393

buildpack = generic framework to build runt envs: source (input is app code), analysis (examines app, makes it
runnable), droplet (output archive w/ all artifacts), metadata (defines runt env, start cmd); consists of three main
executables: bin/detect to detect whether to apply this buildpack, bin/compile to perform transformation
steps on the app, bin/release provide metadata back to the runt (YAML); custom buildpacks exist and
buildpacks can be specified explicitly

to deploy droplet (i.e. app instance deployed), runt cont is created, similar to staging container; uses
staging_info.yml
Docker build etc.: omitted; pros: flexible, extensible, lots of base images, easy to extend and adopt; cons: difficult
to control img srcs, allows dangerous funcs, lot of wok to build generic base img, possibly huge imgs
s2i is a tool to build reproducible, executable Docker imgs; simplifies process to create usable imgs for most use
cases, supports incremental build, verification support, uses native Docker primitives; s2i build dir builder-

img output-img ; supports the following scripts: assemble (build/deploys code to container, download deps,
inject config), run (starts artifacts), save-artifacts (optional; for incremental builds), usage (optional; help);
uses Docker's LABEL for config

CSRV

"A service fulfils the request of a client through discoverable endpoints of an encapsulated implementation
described by a well-defined interface with a uniform messaging protocol plus respective information model."

svc orientation: decomposition into services plus process of describing, publishing, finding, and binding services

svc registry: entity to publish and find services via their descriptions

af://n436

phases: 1. publish (svc provider -> registry; desc + ref/impl), 2. find (svc reg -> consumer; search by function or
properties), 3. bind (svc consumer -> provider)

registries: broker (registry, svc enactment; e.g. Open Service Broker API), repo (svc impl (+ reg); e.g. Docker Hub),
catalog (reg + presentation/UI; e.g. Programmable Web), marketplace (catalog + accounting; e.g. Mashape
Market)

svc broker cats: global, provider, tenant -level; in PaaS: provider/user-managed

Open Service Broker API: catalog (svc list), de/provision (create/delete svc insts), un/bind (provide connection
info to access svc inst); only manages svc instances (Control-Plane) but not comm between app and svc insts
(Data-Plane)

entities: marketplace, svc broker (n:m w/ marketplaces), svc class, svc inst, svc binding
catalog returns list of svc descs w/ name, id, bindable flag, plans + more
plan: describes quantity and quality w/ features, pricing, info
provision is async and takes care of create/deploy and configure/provision a new svc inst
bind: make svc inst available to app (provision); provide conn info
unbind = disconnect; deprovision = delete svc inst
in CloudFoundry, Cloud Controller maintains marketplace; svc key = binding w/o app, used for CLI access;
user-provided-svc = register external svc insts; only requires svcs implement the broker APOI
k8s uses "Service Catalog" w/ YAML API

DVOP1

decomposition: required for SOA, microservices; reduce app into a set of independent, functional svcs: svc is
independently replaceable, upgradeable, deployable; encapsulates functionality, enforces API; supports CI;
complex apps are composed of small, indep svcs, using APIs
Domain Driven Design (DDD): context (setting determining its meaning), domain (area of knowledge/activity),
model (system of abstractions), ubiquitous language (language around domain model), bounded context
(explicit definition of context where a model applies); domain consists of subdomains which are either core,
supporting, or generic
composition: bring svcs together (deploy, provison) to deliver function system/app/...; svcs may depend on each
other; does not manage app lifecycle
centralized app composition: TOSCA, Docker Compose; great for mgmt, poor for scalability; common in
enterprise; centralized global model, logically single controller
decentralized: DNS, BGP; decentralized local model, logically multiple controllers w/ local-only state; great for
scalability, difficult to implement and control
orchestrated (centralized process, global config, one participant) vs choreographed (decentralized proc, multiple
participants, local configs)
composition model spec: declarative (runtime modification and debugging are difficult; common, Docker
Compose, k8s) vs imperative (easier runtime modification, uncommon)
industry standards e.g. TOSCA vs. de-facto standards such as Docker Compose, Helm/k8s
Topology and Orchestration Specification for Cloud Applications (TOSCA): YAML (header + content (node
templates, inputs, outputs)), defines building blocks, models components + relationships; entities: nodes,
relationships, artifacts, svc templates (e.g. LAMP, WP; will be managed by k8s, docker swarm etc.; might include
insts, nets, ifaces, sec groups etc.)
Helm: bundles k8s manifests (= chart); enables reuse and composition; templating for manifests: Chart =
package, bundle of k8s resources (pods, svcs); Release = chart instance in k8s, can be same Chart can installed
several times, each w/ own Release; Repository = repo for published charts (à la Docker Hub); Template = k8s
config w/ Go/Sprig template
Docker Compose automates docker commands, deploys apps comprised of multiple containers; keys: version,
services, volumes, networks; supports extending and healthcheck; allows for scaling

af://n484
af://n519

DVOP2

from "ah ha!" to "ka ching": business, dev, QA, ops, customer
customer wants features, quality, zero-pain w/ install, upgrades
continuous (deploy frequently and in smaller increments): faster time-to-market (faster from idea to dev,
immediate feedback, shorter innovation cycle), minimize risks (small changes, proof of build, awareness of build
status, less key personnel), improve quality (automated testing & auditing, VCS & build history for issue
debugging)
dev (deliver fixes, features; wants changes) vs ops (reliable, stable s/w; wants stability); "works on my machine"
walls of confusion between business/dev (-> agile) and dev/ops (-> DevOps)
main driver: automation of builds, deployments, tests, monitoring, self-healing, system rollouts, system configs;
can be implemented in every stage of a software proc (dev->int->QA->ops); next step can continue iff tests pass,
else feedback loop

Build automation: Building individual components and run unit tests; Typically run by the developer on his local
machine

Continuous Integration: Automatically build, test and integrate components and run Integration Tests (Code
auditing, Security tests, Database tests, UI tests, …); Typically run on Continuous Integration Server; resolve
deps, compile, unit tests, package, deploy to artifact repo, create docs, cleanup; make, rake, cmake, webpack,
grunt, gulp, bower, MS Build, ant, maven, gradle etc.

Continuous Delivery: Also create releases, deploy to staging environment and run automatic acceptance tests
(Stress test, Load Tests, Compliance tests,…); Ready for production, but deployment still requires a manual step

Continuous Deployment: Automatically deploy to production after successful passing acceptance tests

DevOps: Automatically run the operation of the production system (configuration management, infrastructure
provisioning, backup, monitoring, automatic health management, scaling, …)

multi-stage delivery and envs: different envs for each phase/stage: 1+ dev (per-dev/team), 1+ test (integration,
functional, perf tests; close to prod), staging (same as prod for acceptance and ops tests; test deployment proc
& scaling), prod (end user, real data)

code/dev and config/ops are always in VCS; binary artifacts are build exactly once, shared across envs (i.e. not
env-specific); use configs for env-specific reqs; same tooling for deployment to all envs;

Typical Actions per Stage

Development: Syntax check, code metrics, compile, unit tests, package

af://n519

Test: Can be split into multiple stages. Is using stubbed or mocked data

AAT (Automated Acceptance) → Component/Integration-T, Feature/Story-level-T
UAT (User Acceptance) → UI-T, Usability-T, Showcase-T, Client-T

Staging / Pre-Production: Network-T, Capacity-T, Performance-T Smoke-T

Production: Post-Deployment-T, Smoke-T, Cont. Monitoring, Rollback & Re-Deploy

tooling components: VCS, artifact repo, build server, automation agent (Puppet, Chef, Heat, Ansible,
CloudFormation push2cloud, shell), monitoring infra (ELK), secure-store (HashiCorp Vault)

build servers: traditional (easy for simple tasks, challenging to configure workflows; Jenkins, Travis) CI server w/
workflow plugins (Jenkins / Blue Ocean), modern, pipeline-based (Concourse, Netflix Spinnaker, LambdaCD etc.)

automation agent: shell scripts (using cf push, aws, git push, gcloud etc; good for small apps, fragile for cmplex
apps; possible lock-in), config mgmt & orch tools (Puppet etc.; focus on infra, limited support for app platforms
/ migration), platform-provided (lock-in, not suitable yet for complex structures), push2cloud etc. are suited for
complex app mgmt, drive app from current to desired state

Jenkins Pipelines: imperative / Groovy (powerful, flexible, difficult) vs declarative / DSL (easy, limited
functionality, supports script snippets); concepts: pipeline (user-defined model of CD pipeline; defines entire
build proc, includes build, test, deliver), node/agent (imp/decl, resp.; stages can be executed on different ages,
seq or par), stage (conceptual distinct subset of tasks; used for visualization; skippable using when-clause in
decl), step (single task to execute)

DVOP3

feature flags/toggle: uses runtime config

use cases: A/B tests, user/role, IP, desktop/mobile, geo, seamless API/DB migration; allows for beta; fast
disabling; decouples deployment and enabling new SW functionality
toggle categories: release (decouples deploy/release; transitionary), experiment (A/B; transitionary), ops
controls ops aspects e.g. during DB update; long living), permission (flags for internal/tester; long living
but dynamic)

blue-green: two identical envs, warm up new env (smoke check), switch router over, repeat other direction for
next release

canary: instead of switching all requests at once, switch over gradually; pros: easy roll-back, A/B using old/new
versions, check capacity reqs gradually; cons: harder for small installations, DB schema upgrades are harder,
limited to a few prod versions

af://n600

push2cloud: configuration model (for complex composite apps), workflows (to implement complex deployment
scenarios)

application is basic unit of deployment; has manifest (meta, app-specific config, env vars, deps);
maintained by dev; can be used in multiple releases
release is composition of apps in specific release; manifest (list of apps + versions, global svc deps);
maintained by release manager; deployment indep; can be used for multiple deploys (dev, staging, prod)
deployment is specific instance of system running on target env (contains all necessary config to deploy,
provision, run apps); manifest (target env vars, reference release, global config params e.g. routing, service
plans etc.); maintained separately from release/app in config repo
workflow: collection of actions to bring current to desired state; uses Desired Deployment Config as input;
imperative (JS), async (functional, parallel), reliable (timeouts, retries, grace periods)

zero downtime CNA migration is easy (since they're stateless by design), but schema migration is hard!
(stop/start is not an option; reduce functionality impacts customer; sync is error prone); instead design the app
to allow migration, which needs a lot of planning (small steps, back-/forward compatible in each step)

rollback has to be possible within one block/step

Add a Field/Column

1. DB: Add new Column
2. DB: Preset value (NULL, default, computed)
3. Code: read from and write to the Column

Change a Field/Column (name, type, format)

1. DB: add new column (no constraints e.g. NotNull)
2. Code: read from old column, write to both
3. DB: copy data from old to new column (for large datasets do it in multiple shards) add required

constraints (eg. NotNull) to new column
4. Code: read from new column, write to both
5. DB: delete constraints from old column
6. Code: read from, write to new column only
7. DB: delete the old column

Delete a Field/Column

1. DON’T! It is a destructive operation → Keep the Column for a retention period
2. Code: stop reading, but keep writing the column
3. (in consolidation phase after retention period) Code: stop, writing the column, DB: Delete the

Column
best practice: decouple DB (simple DB model per microsvc); use event-sourcing and CQRS allowing to
recreate the view model; commit changes in VCS

AMON

CNA have new monitoring reqs: much more dynamic, different release management, capacity planning

infra (server, net): server health, record disk/mem/cpu usage + thresholds, USE method

svcs: DB (QPS, IOPS), load balancer, message queueing (queue length, consumption rates; app-specific norms),
caches (hit/eviction ratio)

user-level / frontend (good UX?): important for SPA; use Real User Monitoring (JS for metrics) or synthetic
monitoring (to generate loads)

af://n695

app (app health; microsvc and aggregate): final component in DevOps loop; should also provide feedback to
business / development for next product version; app health, app performance, addtl metrics according to
business KPIs (transaction rate, number of subscriptions per time, duration of video played etc.); log messages
for detailed info about values and flow

health: is app up and reachable; is it responding correctly; is state ok (health endpoint; Spring Boot 2
actuator provides health,metrics,logfile,env,....); use internal watchdogs and 3rd party monitoring
metrics: use counters (event counters, e.g. page hits), gauges (min-max value, e.g. memory usage), timers
(basic outline of metric distribution over a period of time e.g. min, max etc.); collected using monitoring
endpoint, sidecar or pushed by agent, e.g. statsd
distributed tracing: more advanced monitoring, suited for microsvc; focus on flow of individual requests;
large amounts of data, identifying issues is non-trivial, e.g. Opentracing (uses DAG of Spans) and Jaeger
(compatible w/ Opentracing, provides full distributed tracing); other approach: lstio/envoy, uses sidecar
difference monitoring / logs is unclear; logs tend to have more context and extracting metrics from log
data is non-trivial

log (warnings/error in logs?): use ELK

Logstash: powerful filtering (parse+structure and filter) and post-processing of log data, supports output
conditionals (prio etc.)
Elasticsearch (distributed near-realtime document store, uses Apache Lucene, every field is indexed and
searchable, no a-priori schema, powerful query DSL, highly scalable
Kibana: discover (interactive, useful for troubleshooting) and dashboard (monitor system; savable) modes)
for on-premise

CECO

TCO = direct costs (hw, sw, maintenance service, electricity for servers, app migration efforts etc.) + indirect
costs (rack costs, staff salary, tax, electricity for cooling, lighting, performance changes etc.)

return on investment

net present value where = number of years over which investment is made, = cost of

investment at time and = discount rate (or depreciation rate)

every tech shift is met with resistance, cloud migration initially challenging (vendor lock-in, security, legacy),
benefits outweigh concert (pay-as-you-go, economies of scale (see below))

cost of energy , PUE is lower in large facilities compared to smaller facilities

infrastructure labor costs: better utilization of human resource in large datacenters

af://n738

security and reliability: fixed cost to achieve operational security and reliability
purchase negotiation power: significant volume discounts for datacenter operators

TCO analysis omitted

Metering: resource usage tracking and reporting
Mediation: reconciliation and conversion of different data formats into uniform record structure (data comes
from different sources)
Accounting: data sanity checks, non-repudiation, data safety and security and storage as per local regulatory
guidelines
Pricing: determination of appropriate mathematical functions to apply based on multiple input parameters
(policy based, usage based, static etc.)
Charging: transformation of ‘session’ usage records to charge records by application of ‘pricing functions’
(charge = pricing_fn(session usage data);)
Billing / invoicing: consolidation of all charge records for a given period for an entity; an itemized document
with amount due is generated; discounts, rebates, local taxes, due date is included
Financial clearing: process of amount settlement, collection of dues, etc.; credit / debit card gateway integration;
automated clearing house (ACH) etc.

AWS, Azure, CloudSigma, Swisscom, APPUiO etc. have vastly different SLAs and pricing models; providers'
liability is limited, offers are hard to compare, good to have a contingency plan, PaaS' SLAs often
underdeveloped

	Cloud Computing 2
	CC2I
	PAAS
	CNA1
	CNA2
	CNA3
	ARCH
	RUNT
	CSRV
	DVOP1
	DVOP2
	DVOP3
	AMON
	CECO

