Differential Calculus

- Limits

$>$ The number a is called cluster point of a sequence a_{n}, if an inifnte nmber of terms of the seuqnce clusters close to a
$>$ The number a is called limit of the sequence a_{n}, if there exists $n_{0} \in \mathbb{N}$ so that all terms a_{n} with $n>n_{0}$ cluster close to a

$$
\lim _{n \rightarrow \infty} a_{n}=a \text { where } a \text { is finite }
$$

such a sequence is convergent and has always a cluster point

- Limit Theorems hold true if a_{n} and b_{n} are convergent

$$
\begin{aligned}
& >\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty}\left(a_{n}\right) \pm \lim _{n \rightarrow \infty}\left(b_{n}\right)=a \pm b \\
& >\lim _{n \rightarrow \infty}\left(a_{n} * b_{n}\right)=\lim _{n \rightarrow \infty}\left(a_{n}\right) * \lim _{n \rightarrow \infty}\left(b_{n}\right)=a * b \\
& >\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{\lim _{n \rightarrow \infty}\left(a_{n}\right)}{\lim _{n \rightarrow \infty}\left(b_{n}\right)}=\frac{a}{b} \text { for } b_{n} \neq 0, b \neq 0
\end{aligned}
$$

- Limit of Functions

$$
\begin{aligned}
& >\lim _{x \rightarrow a} c=c \\
& >\quad \lim _{x \rightarrow a} c * f(x)=c * \lim _{x \rightarrow a} f(x) \\
& >\quad \lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x) \\
& >\quad \lim _{x \rightarrow a}(f(x) * g(x))=\lim _{x \rightarrow a} f(x) * \lim _{x \rightarrow a} g(x) \\
& >\quad \lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \text { if } \lim _{x \rightarrow a} g(x) \neq 0
\end{aligned}
$$

- A secant of a curve is a straight line segment which joins any two points on the curve. The slope of the secant measures the average rate of change

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- A tangent is a straight line which touches a curve a t point. The slope of the tangent measures the instantaneous rate of change at this point

$$
t(x)=m * x+q \text { where } m(x)=f^{\prime}(x)
$$

- A normal is perpendicular to the tangent

$$
m_{t} * m_{n}=-1
$$

- The derivative (differential quotient) is the slope of the tangent to the curve. The derivative of $f(x)$ is written as $f^{\prime}(x), y^{\prime}(x), y^{\prime}$ or $\frac{d f}{d x}(x)$
It can be found using two different methods

> h-method

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

> x-method

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

- Derivative Rules

> The Constant Rule

$$
f(x)=c \rightarrow f^{\prime}(x)=0
$$

> The Sum Rule

$$
f(x)=u(x)+v(x) \rightarrow f^{\prime}(x)=u^{\prime}(x)+v^{\prime}(x)
$$

> The Power Rule

$$
f(x)=x^{n} \rightarrow f^{\prime}(x)=n * x^{n-1}
$$

> The Factor Rule

$$
f(x)=c * u(x) \rightarrow f^{\prime}(x)=c * u^{\prime}(x)
$$

