Differential Calculus

- Limits

- > The number *a* is called **cluster point** of a sequence *a_n*, if an inifite nmber of terms of the seuqnce clusters close to *a*
- > The number *a* is called **limit** of the sequence a_n , if there exists $n_0 \in \mathbb{N}$ so that **all** terms a_n with $n > n_0$ cluster close to *a*

lim
$$a_n = a$$
 where a is finite

such a sequence is convergent and has always a cluster point

- Limit Theorems hold true if a_n and b_n are convergent
 - > $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} (a_n) \pm \lim_{n \to \infty} (b_n) = a \pm b$

>
$$\lim_{n\to\infty} (a_n * b_n) = \lim_{n\to\infty} (a_n) * \lim_{n\to\infty} (b_n) = a * b$$

>
$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to \infty} (a_n)}{\lim_{n \to \infty} (b_n)} = \frac{a}{b} \text{ for } b_n \neq 0, b \neq 0$$

- Limit of Functions
 - > $\lim_{x \to a} c = c$
 - > $\lim_{x \to a} c * f(x) = c * \lim_{x \to a} f(x)$
 - > $\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$

>
$$\lim_{x \to a} (f(x) * g(x)) = \lim_{x \to a} f(x) * \lim_{x \to a} g(x)$$

>
$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} if \lim_{x \to a} g(x) \neq 0$$

- A **secant** of a curve is a straight line segment which joins any two points on the curve. The slope of the secant measures the **average rate of change**

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- A **tangent** is a straight line which touches a curve a t point. The slope of the tangent measures the **instantaneous rate of change** at this point

$$t(x) = m * x + q$$
 where $m(x) = f'(x)$

- A **normal** is perpendicular to the tangent

$$m_t * m_n = -1$$

- The **derivative (differential quotient)** is the slope of the **tangent** to the curve. The derivative of f(x) is written as f'(x), y'(x), $y'or \frac{df}{dx}(x)$

It can be found using two different methods

> h-method

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

> x-method

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- Derivative Rules

> The Constant Rule

> The Sum Rule

$$f(x) = c \to f'(x) = 0$$

$$f(x) = u(x) + v(x) \rightarrow f'(x) = u'(x) + v'(x)$$

$$f(x) = x^n \to f'(x) = n * x^{n-1}$$

> The Factor Rule

> The Power Rule

$$f(x) = c * u(x) \rightarrow f'(x) = c * u'(x)$$