
Lecture Summary  Systems Programming and Computer Architecture on 1/28/2016 

Version 1.1b as of 1/4/2016 Page 1 of 48 

Lecture Summary 

Table of Contents 
1 Introduction.................................................................................................................................................................. 2 

2 Introduction to C ........................................................................................................................................................ 2 

3 Representing C Integers ......................................................................................................................................... 4 

4 Pointers ........................................................................................................................................................................... 5 

5 Dynamic Memory Allocation ............................................................................................................................... 7 

6 C Wrap-Up ..................................................................................................................................................................... 8 

7 Basic x86 Architecture ......................................................................................................................................... 10 

8 Compiling C Control Flow................................................................................................................................... 12 

9 Compiling C Data Structures ............................................................................................................................. 16 

10 Code Vulnerabilities .............................................................................................................................................. 18 

11 Memory Allocation ................................................................................................................................................. 18 

12 Linking .......................................................................................................................................................................... 24 

13 Floating Point ............................................................................................................................................................ 27 

14 Optimizing Compilers ........................................................................................................................................... 29 

15 Architecture and Optimization ........................................................................................................................ 30 

16 Caches ........................................................................................................................................................................... 32 

17 Exceptions .................................................................................................................................................................. 34 

18 Virtual Memory ........................................................................................................................................................ 36 

19 Multiprocessing ....................................................................................................................................................... 40 

20 Devices ......................................................................................................................................................................... 44 

 

Info 
There is no claim for completeness. All warranties are disclaimed. 

Creative Commons Attribution-Noncommercial 3.0 Unported license. 

 

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/2.5/ch/


Lecture Summary  Systems Programming and Computer Architecture on 1/28/2016 

Version 1.1b as of 1/4/2016 Page 2 of 48 

Study Part 
Disclaimer: I have already attended course 252-0062-00L “Operating Systems and Networks” by 

Prof. Hoefler and Prof. Perrig. Due to that some elements in this summary might not be discussed 

extensively. See also: http://studysheets.ch/sheets/operating-systems/download. 

Since writing code is rather tedious in Microsoft Word and I am really in favor of saving paper, the 

following variable declarations may be assumed:1 

1 Introduction2 

Five important realities to always keep in mind: 

1. ints are not integers – floats are not real numbers. E.g. 𝑖2 ≥ 0 only holds for floats, not neces-

sarily for ints. While computer arithmetic doesn’t generate random values not all “usual” 

mathematical properties may be assumed. Integer operations stratify properties of rings, 

floating point operations satisfy ordering properties. 

2. You’ve got to know assembly. It is the key to understanding the machine-level execution 

model. 

3. Memory matters – RAM is an unrealistic abstraction. Memory is not unbounded, is the source 

of pernicious bugs, and memory performance is not uniform. 

4. There’s much more to performance than asymptotic complexity. Not only do constant factors 

but you also have to understand the system to optimize performance. 

5. Computers don’t just execute programs. I/O is critical to reliability and performance. Addi-

tionally there’s network communication which is the source for many system-level issues. 

2 Introduction to C 

Contrary to languages such as C# or Eiffel, C is very fast, is close to the metal, and uses a powerful 

macro pre-processor (cpp). The cpp performs string and file substitution and conditional com-

pilation. It is the choice for OS developers, embedded systems, speed fanatics, and authors of se-

curity exploits. On the other hand, C lacks OOP features, a lot of built-in types, and exceptions. 

Furthermore it doesn’t have automatic memory management but it has pointers which offer di-

rect access to memory addresses. A return value of 0 indicates everything went okay. 

Workflow GNU gcc toolchain 

  

                                                             

1 By personal preference, I use Source Code Pro as monospace font. In the final PDF the fonts are (or at least 
should be) embedded. If you have problems viewing this file, please install the font by downloading it for 
free from Adobe on GitHub: github.com/adobe-fonts/source-code-pro 
2 The heading numbers [of level 2] correspond to the chapter/lecture numbers by Prof. Roscoe and the sub-
headings correspond to the different topics outlined in each lecture. Exception: Chapter 1 

http://studysheets.ch/sheets/operating-systems/download
https://github.com/adobe-fonts/source-code-pro
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Control flow in C 

Just like C# etc. C has if/else, switch, return, 

for, while, do/while, break, continue,  

statements. While  is highly controver-

sial, it does have a purpose in e.g. OS code 

where cleanup needs to be done, e.g. a func-

tion has to perform an operation and needs 

to do three things before it can do its main 

purpose. If any of these three “things” fail, 

they need to be cleaned up. To do so, their 

cleanups are written in reverse order after 

the main part and s are used to jump there. C relies on the main() function, it starts off the 

whole program. 

Basic types in C 

Declarations within a block are local to that block whereas 

declarations outside of a block are declared in the entire pro-

gram. Static inside a block persists between calls, outside 

blocks it is limited to the file. 

Integers are signed by default; “signed” and “unsigned” can 

be used to clarify. Types have different sizes on different ar-

chitectures, the right-hand table lists the sizes for Intel x86-

64. Rules for arithmetic on integers and floats are complex 

since they involve implicit and explicit (casts) conversions. 

Booleans are just integers (0::  and non-0:: ) and the “ ” operator turns anything non-

zero into 0 and vice-versa. Support for a new  type was added in C99 yet is completely op-

tional. Statements in C are also an expression can be useful for e.g. file-exists calls. 

 is a type and doesn’t have a value. It is used as an untyped pointer to [raw] memory and for 

functions with no return value (aka procedures). 

Operators 

C supports a wide array of operators including shifts, the ternary if-else operator, bitwise opera-

tor, and (arithmetic) assignment operators. Additionally, the following are considered operators 

for operating on pointers: *, &, (type), sizeof. In- and decrements come in pre and post flavor and 

differ in what value the variable being incremented has when accessing it. This works for scalar 

types and pointers. Casting is available for most types. 

Arrays in C 

An array is a finite vector of variables which are all of the same type and indices are zero-based. 

The compiler does not perform bound checking. To initialize an array, different methods are avail-

able. 

 

C data type Intel x86-64 

char 1 
short 2 
int 4 
long 8 
long long 8 
float 4 
double 8 
long double 10/16 
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Strings are an array of chars in C, terminated with null `\0`. Henceforth, 

 is equivalent to . Yet C does provide a lot 

of library functions to operate on strings. 

3 Representing C Integers 

Bit-wise operators treat arguments as bit vectors while logic operators always return 0 or 1 

(while treating 0 as false, and anything else as true) and may terminate early. To avoid null pointer 

access, the following trick can be used: . The bitwise operators have the following mean-

ings as vector operations: “&”→ intersection, “|”→ union, “^”→ symmetric difference, “~”→ com-

plement. Shift operations the following properties: 

Left shift: x << y Right shift: x >> y Undefined behavior 

 Shift bit-vector x 
left y positions  

 Throw away extra 
bits on the left 

 Fill with 0s on the 
right 

 Shift bit-vector x right y positions 
 Throw away extra bits on the 

right 
 Logical shift: fill with 0s on the 

left 
 Arithmetic shift: replicate MSB 

on the right 

 Shift amount < 0 

 Sift amount ≥ word size 

Integer ranges 

 Unsigned Two’s complement 

Conversion 
𝐵2𝑈(𝑥) =∑ 𝑥𝑖 ⋅ 2

𝑖
𝑤−𝑖

𝑖=0
 

𝐵2𝑇(𝑋)

= −𝑥𝑤−1 ⋅ 2
𝑤−1 +∑ 𝑥𝑖 ⋅ 2

𝑖
𝑤−2

𝑖=0
 

𝑴𝒊𝒏 
𝒘 = 𝟏𝟔 

UMin = 0 = 000…0 TMin = −2𝑤−1 = 100…0 
−32768 = 0x8000 

𝑴𝒂𝒙 
𝒘 = 𝟏𝟔 

UMax = 2𝑤 − 1 = 111…1 
65535 = 0xFFFF 

TMax = 2𝑤−1 − 1 = 011…1 
32767 = 0x7FFF 

-1 N/A 0xFFFF 
0 0x0000 

Observations |TMin| = TMax + 1, UMax = 2 ⋅ TMax + 1; 
2’s complement: ~𝑥 + 1 =  −𝑥; ~𝑥 + 𝑥 = 111…1 = −1 

 
Constants in C are considered to be singed integers. Casting between signed and unsigned is pos-

sible using “(int)” and “(unsigned)”, respectively. Casting can also happen implicitly. When mixing 

signed and unsigned numbers in an expression, however, singed values are implicitly cast to un-

signed. Sign extension works by copying the MSB. C automatically performs sign extension for 

signed values. 

Integer addition and subtraction in C 

𝑠 = 𝑈𝐴𝑑𝑑𝑤(𝑢, 𝑣, ) = 𝑢 + 𝑣 mod 2
𝑤 = {

𝑢 + 𝑣, 𝑢 + 𝑣 < 2𝑤

𝑢 + 𝑣 − 2𝑤 , 𝑢 + 𝑣 ≥ 2𝑤
 

The standard unsigned addition function ignores the carry output (a 𝑤 bit operand would result 

in a 𝑤 + 1 bit number) and thus implements modular arithmetic; it wraps around when the true 

sum is ≥ 2𝑤 . This operation forms an Abelian group: it is closed under addition, commutative, 

associative, 0 is the additive identity, and each element has an additive inverse. 
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𝑇𝐴𝑑𝑑𝑤(𝑢, 𝑣) =

{
 
 

 
 

𝑢 + 𝑣 + 2𝑤 , 𝑢 + 𝑣 < 𝑇𝑀𝑖𝑛𝑤⏞          
negative overflow

𝑢 + 𝑣, 𝑇𝑀𝑖𝑛𝑤 ≤ 𝑢 + 𝑣 ≤ 𝑇𝑀𝑎𝑥𝑤
𝑢 + 𝑣 − 2𝑤 , 𝑇𝑀𝑎𝑥 < 𝑢 + 𝑣⏟          

positive overflow

 

Unsigned and signed addition have the same bit-level behavior in C. Performing two’s comple-

ment addition also requires 𝑤 + 1 bits, and it then drops off the MSB and treats the remaining 

bits as a two’s complement integer. When rapping around it behaves as follows: if the sum is ≥

2𝑤−1 it becomes negative (at most once) and if the sum is < −2𝑤−1 it becomes positive (at most 

once). Addition in 2’s complement forms a group. The group is isomorphic to unsigneds in un-

signed addition. 

Integer multiplication in C 

 Unsigned (up to 𝟐𝒘 
bits) 

2’s complement min (up 
to 𝟐𝒘−𝟏 bits) 

2’s complement max (up to 𝟐𝒘 
bits, but only for (𝑻𝑴𝒊𝒏𝒘)

𝟐) 

Range 0 ≤ 𝑥 ⋅ 𝑦
≤ (2𝑤 − 1) ⋅ 2
= 22𝑤 − 2𝑤+1 +  

𝑥 ⋅ 𝑦
≥ (−2𝑤−1) ⋅ (2−𝑤−1 − 1)

= −22𝑤−2 + 2𝑤−1 

𝑥 ⋅ 𝑦 ≤ (2𝑤−1)2 = 22𝑤−2 

 
Unsigned multiplication produces a 2𝑤 bit results but discards 𝑤 bits and thus implement mod-

ular arithmetic. Together with unsinged addition if forms a commutative ring: addition is a com-

mutative group, it is close under multiplication, it is commutative and associative, 1 is the multi-

plicative identity, and multiplication distributes over addition. 

Signed multiplication produces a 2𝑤 bit results but discards 𝑤 bits. It is again isomorphic to un-

signed multiplication and addition and both of them are isomorphic to ring of integersmod 2𝑤 . 

Integer multiplication and division using shifts 

𝑢 ≪ 𝑘 is equivalent to 𝑢 ⋅ 2𝑘 , in both signed and unsigned representations. 𝑢 ≫ 𝑘is the same as 

⌊𝑢/2𝑘⌋ and uses a logical shift for unsinged numbers and an arithmetic shift for signed numbers 

(in that case, it also rounds in the wrong direction when 𝑢 < 0. To get a correct quotient of a neg-

ative number, the following can be used ⌊(𝑥 + 2𝑘 − 1)/2𝑘⌋ ⇔ (𝑐 + (1 ≪ 𝑘) − 1) ≫ 𝑘. 

4 Pointers 

The stack 

To support recursion, code must be reen-

trant meaning there are multiple simulta-

neous instantiations of a single procedure. 

And the stack is where all arguments, local 

variables, and return pointers are saved for 

the time between when a routine is called 

and when it returns. To ensure stack disci-

pline, the callee returns before the caller 

does. The stack is allocated in frames. The 

stack grows downwards. 
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Pointers in C 

 produces the virtual address where the value of  

is stored.3 A pointer is a variable which contains a 

memory address and points to somewhere in the 

process’ virtual address space. Dereferencing a 

pointer is access the memory referred to by a pointer. 

NULL is a guaranteed-to-be-invalid memory location 

and its type is . Ayn attempt to 

dereference a null pointer leads to a segmentation 

fault. 

As a security feature, the address space is randomized. Linux randomizes the base of the stack 

and the locations of the shared libraries. This makes debugging more challenging. 

Box-and-arrow diagrams 

Omitted. 

Pointer arithmetic 

You can perform arithmetic operations on pointers. These operations respect the size of 

( ; is evaluated at compile time). E.g. increasing a  increases 

the address by one byte while increasing an  increases the address by four bytes. 

Arrays and pointers 

An array name is an expression and is treated as a pointer to the first element of the array4unless 

(1) the array’s address is taken with a , (2) the array is a string literal initializer, or (3) the array 

is an operand of .An array name as a function parameter is a pointer.5 Arrays can’t be 

renamed (compile-time error) but when referring to them as a pointer, it’s possible. 

Passing by reference 

By default, C passes arguments by value thus giving the callee a copy of the value. This implies the 

callee cannot modify the caller’s copy. When passing by reference, the callee still receives a copy 

of the argument, but now it is pointer of which the value points to the variable in the scope of the 

caller thus allowing the callee to modify the variable in the scope of the caller. 

 

 Strings are arrays of characters terminated by 

null bytes 

 Assignment is an expression, not a statement 

 Non-zero values evaluate to true, zero evalu-

ates to false 

 Post-increment operators bind more tightly 

than pointer dereference 

 A semicolon is statement terminator, not a sep-

arator 

 

                                                             

3 
4 The compiler rewrites  always to  
5 This is how functions are converted to pointers. 
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Declaration Meaning 

 is a pointer to  
 is an  of pointer to  
 is an of pointer to  
 is a pointer to a pointer to an  
 is a pointer to an  of  
 is a function returning a pointer to  
 is a pointer to a function returning  
 is a function returning  to an  of pointers to functions 

returning  
 is an array[3] of pointers to functions returning pointers to  

of s 

5 Dynamic Memory Allocation 

A global variable is statically allocated when the program is loaded and deallocated when it exits. 

Variables within functions are automatically allocated when the function is called and deallo-

cated when the function returns. When there is a need for more memory which persist across 

multiple calls, is too big for the stack, or the required size isn’t known to the caller, dynamically 

allocated memory is used. The program explicitly requests a new block of memory which persists 

until the code explicitly deallocates it.6 

The C memory API 

 allocates a block of memory of the given size and 

returns a pointer to the first by of that memory (and NULL 

if the memory cannot be allocated). The memory should be 

assumed to contain garbage. To calculate the size needed,  is typically used.  

behaves similarly except it takes to parameters and then multiplies them and it zeroes the 

memory out, making it a bit slower but also more readable and less error-prone. 

Deallocation is done using  which releases the memory at 

the pointer. To do so, it has the point to the first byte of the allo-

cated memory and it is a good practice to NULL the pointer after 

freeing the memory. 

While allocations have a fixed size, memory can be reallocated to change the size of the block 

using . This operation most likely will copy the data to a new location and thus the new 

address returned has to be used. 

 is an unsigned integer of some size and is also the return type of . It is large 

enough to hold the size of the largest possible array in memory which makes it a suitable type to 

be used to store a pointer.  is also an unsigned integer and is the result of subtracting 

two pointers. It is used for array loops, size calculations etc. 

Managing the heap 

The heap (“free store”) is a large pool of unused memory which is used for dynamically allocated 

data structures. To keep track of that memory,  maintains bookkeeping data of allo-

cated blocks in the heap. Memory leaks happen when code doesn’t deallocate memory which is 

no longer used. As an implication, the memory footprint of that program will keep growing which 

                                                             

6 Or it is collected by the garbage collector, a feature lacking in C. 
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is often really bad. Note: garbage-collected languages are not memory-leak-prone, they’re just 

much less likely. 

Structures and unions 

A  is a C type which contains a set of fields and 

is comparable to class but it lacks methods and con-

structors. Instances can be allocated on the stack or 

on the heap. To refer to fields, a “ ” Is used and “ ”7 

refers to field through a pointer to a . When 

copying by assignment, the entire contents are cop-

ied which is for example what happens when using 

them as arguments for a function (to pass by refer-

ence, a pointer to it is passed). Of course, you can also 

return a . 

Unions are like s and are also accessed as such, but they only hold one of a set of alternative 

values (but they do not check which value is correct). 

Type definitions 

A  introduces a new definition or rather a new name for a type. They can be used to build 

up declarations in an easily understandable fashion. 

 

Dynamic data structures 

Omitted.8 

Generic data structures 

Omitted.9 

6 C Wrap-Up 

The C preprocessor 

As aforementioned, C has a powerful preprocessor. One usage is to 

include header files inline in the source code which is essentially a 

basic mechanism for defining APIs. Double-quotes are for local head-

ers, greater/smaller-than signs are used for system headers. The cpp 

also supports macro definitions which work as a token-based 

                                                             

7 Which ( ) is shorthand for  
8 For an example on how to implement a singly-linked list, please see slides 35 – 40. 
9 For an example on how to implement a generic linked list, please see slides 42 – 44. 
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macro substitution. Furthermore, there is also support for conditionals. Since semicolons are a 

null statement in C, it has to be “swallowed” in macro definitions which is done by using back-

slashes. 

Modularity 

A function declaration says something exists somewhere (“prototype”) while a function defini-

tion says what it is (“code”). C deals with compilation units which consist of a C file plus every-

thing it includes. Declaration can be annotated with  (definition is somewhere else, either 

in this compilation unit or another) or  (definition (also ) is in this compilation unit, 

and can't be seen outside it). The same also applies to global variables which are also declared. A 

module is a self-contained piece of a larger program. It consist of externally visible (aka interface) 

parts (functions to be invoked, s, global variables, cpp macros) and internal parts (internal 

function, types, global variables). A C header file is 

used to specify interfaces. Clients include the 

header file ( ) which contains to definitions 

but only external declarations. The implementa-

tion is typically in  (which also includes 

) and doesn’t contain any external declara-

tions but only definitions and internal declarations. 

Function pointers 

In this code: ,  is a pointer to a function which takes two argu-

ments, a pointer to  and a , and returns an . This can be used with s, just like 

any type, and is the basis for lots of techniques in systems code. 

Assertions 

Assertions are evaluated at runtime and if it evaluates to 

true, nothing happens, otherwise it prints an error message and the program aborts (core dump). 

When compiling with , assertions are removed. Assertions are macros and shouldn’t con-

tain side-effects. They are for programmers to find bugs, not for programs to detect errors. 

The  construct is almost never a good idea, even though some argue on performance grounds. 

It can, however, be used for early termination of multiple loops and to cleanup nested code. It is 

used for recovery code where the code performs a sequence of operations and any one can fail 

and if it fails, all previous operations must be undone. A typical example is ing a sequence 

of buffers for data.10 

 and  

 saves the current stack state in  and re-

turns 0. causes another return to the 

point saved by env. The new , returns  (or 1 if  is 0). This can only be done once for 

each . It is invalid if the function containing the  returns. 

Coroutines 

An example where coroutines can be used, is a decompression algorithm with a decompressor 

(which runs until it has a character limit) and a parser (which continues where it previously left 

                                                             

10 This code is often auto-generated. 

cpp boilerplate ensures file contents only 

appear once; never  a .c file 
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off, processes new characters and runs until it needs a new one, and then calls back to the decom-

pressor). 

7 Basic x86 Architecture 

What is an instruction set architecture? 

An architecture (also ISA) describes the parts of a processor design 

which is relevant to writing assembly code, such as instruct set specifica-

tion, registers. A microarchitecture is an implementation of said archi-

tecture (cache sizes, frequency). 

CISC stands for Complex Instruction Set Computer. It is stack-

oriented; the stack is used to pass arguments (which saves the program 

counter), providing explicit push and pop instructions. Arithemetic 

instructions can access memory and conidition codes are used as a side 

effect of artihemtic and logic instructions. The philosophy is to add 

instructions to perform typical programming tasks. x86 ist CISC. 

RISC stands for Reduced Instruction Set Computer. The instructions are 

fewer and simpler which might result in more instructions yet they can be executed on small and 

fast hardware. The instruction set is register-oriented which are quite numerous and are used 

for arguments, return pointers, and temproatries. Only load and store isntructions can access 

memory and there are no condition codes (test instrunctions return 0/1 in a register). MIPS is 

RISC and is motivated by “simpler is faster” 

While there is still an ongoing debate between CISC (easy for compiler, fewer code bytes) and RISC 

(better for compiler optimization, make it run fast with simple chip design), currently RISC is still 

a sensible choice for embedded processors while the ISA choice is not a technical issue on desktop 

processors. 

A bit of x86 history 

Omitted.11 

Basics of machine code 

The state visible to the 

programmer consists 

of the program coun-

ter (PC) which con-

tains the address of 

the next instruction 

(called RIP on x86-

64), the register file 

(which contains heavily used program data), and the condition codes 

which store status information about the most recent arithmetic operation 

                                                             

11 This chapter mentions however, this course uses x86-64 and AT&T Assembly syntax. 
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(which is used for conditional branching). The memory is byte-addressable and contains code, 

used data, some OS data and also includes the stack which is used to support procedures. 

There are two data types in assembly: integers (1, 2, 4, 8 bytes; data values or addresses) and 

floating point data (4, 8, 10 bytes). As for code operations there are three categories: arithmetic 

functions on register or memory data, data transfer between memory and register, and transfer 

control (conditional and unconditional branches/jumps). 

The assembler translates the .s (assembly instructions generated by the compiler) file into .o (ob-

ject code) which contains binary encodings of each instruction and is, save for the linkages, the 

executable code. The linkages resolved by the linker. 

x86 Architecture 

To move data, the  instruction is 

used whereas x is one of { }12. The operands, 

 and , can be any one of the following: 

- Immediate: constant integer data (prefixed 

with ), encoded as 1, 2, 4, 8 bytes; e.g.  

- Register: one of 16 integer registers; note some 

registers reserved or have special uses for par-

ticular instructions; e.g.  

- Memory: 1, 2, 4,8 consecutive bytes at address 

given by register; e.g.  

There are two simple memory addressing modes: 

- Normal: (R) → Mem[Reg[R]]  where the regis-

ter  specifies a memory address; e.g. 
 

- Displacement: D(R) → Mem[Reg[R] + D] 

where the register  specifies the start of a memory region and the constant displacement  

specifies the offset; e.g.  

The most general form, however, is: 

D(Rb, Ri, S) → Mem[Reg[Rb] + S ⋅ Reg[Ri] + D] 

With the following special cases: 

(Rb, Ri) → Mem[Reg[Rb] + Reg[Ri]] 

D(Rb, Ri) → Mem[Reg[Rb] + Reg[Ri] + D] 
(Rb, Ri, S) → Mem[Reg[Rb] + S ⋅ Reg[Ri]] 

 

- D: constant displacement of 1, 2, 4 bytes 

- Rb: base register: any of 16 integer regis-

ters 

- Ri: index register: any except for  

- S: scale: 1, 2, 4, 8 

 

                                                             

12 See table on the right. 

Register Purpose 

%rax Accumulate 
%rbx Base 
%rcx Counter 
%rdx Data 
%rsi Source index 
%rdi Destination index 
%rsp Stack pointer 
%rbp Base pointer 
%rip Instruction pointer 
%r8 … %r15  
%rsr Status (flags) 

 

Abbr. Meaning Bytes 

q Quad word 8 
l Long word 4 
w Word 2 
b Byte 1 
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This address computation combined with the  instruction can also be (ab-)used to 

compute addresses without a memory reference and to compute arithmetic expressions of the 

form 𝑥 + 𝑘 ⋅ 𝑦, 𝑘 ∈ {1,2,4,8}. 

x86 integer arithmetic 

  

Condition codes 

The condition codes are implicitly set (as a “side effect”) by 

the arithmetic operations (but not by ). Or they are set 

explcitiyl by compare instructions ( ) or by 

test instructions ( ) (which is very useful 

together with bitmasks). 

The  family of instructions sets a single byte based on combinations of condition codes. The 

 instructions jump to different parts of the code depending on condition codes. 

8 Compiling C Control Flow 

 statements 

 

                                                             

13 “load effective address” 
14  is like computing 𝑎 − 𝑏 without setting the destination 
15  is like computing  without setting the destination 

Single bit registers 

- Carry Flag (for unsigned) 

- Sign Flag (for signed) 

-  Zero Flag 

-  Overflow Flag (for signed) 



Lecture Summary  Systems Programming and Computer Architecture on 1/28/2016 

Version 1.1b as of 1/4/2016 Page 13 of 48 

An  statement con-

sists of a test, and one (two) 

 branch (and one  branch). 

The test is an expression returning 

an integer whereas anything other 

than 0 is interpreted as  and 0 

is interpreted as . Further-

more, any conditional expression 

can be translated into a  version. This  version, which has separate regions for the  

and  expressions (and executes the appropriate one), is the typical translation of a conditional 

expression into assembly. 

Another way to translate a 

conditional into assembly is 

by using a conditional 

move. This makes use of the 

 instruction 

which moves a value from 

 to  if the condition C 

holds. This has the advantage 

of being more efficient than 

conditional branching (simpler control flow) but it introduces overhead since both branches are 

evaluated. Consequently this approach cannot be used if the  or  expressions have side 

effects or when they are too expensive. 

 loops 

A  loop uses a 

backward branch to con-

tinue looping. The branch 

is only taken when the 

 condition holds. As 

an implication, the loop 

body is already executed 

before the first check is 

performed (no matter whether that 

check returns  or ). For 

assmebly translation, the goto-version-

method is used again since this allows 

producing very hardware-like code in C.  

 loops 

Converting a  loop into a  version is very similar to the  loop’s translation save 

for an extra test before the loop is entered. 
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There is, however, a new method to perform this translation where the first iteration jumps over 

the body computation within the loop. This avoids duplicating the code to check the test/condition 

and unconditional  incur no performance penalty.  loops are compiled similarly. The rea-

son for these new “jump-to-middle” loop translations is based on the fact of new(er) processors 

having almost no overhead when branching unconditionally. 

 loops 

Last but not least,  loops are compiled by combining all of the preceding techniques. First, the 

 loop is converted into an  

loop, which is then translated into a  version OR a jump-to-middle intermediary, and 

eventually into a  version. 

Compact  statements 

A compact statement is a switch where there are e.g. s for a range of numbers plus a 

case, optionally with multiple labels, missing s, and fall through s. This 

code block will be converted into a jump table, most likely with s re-arranged to prevent rep-

etitions of the same code (DRY16). 

Jumps in assembly are either direct where the jump target is denoted by a label (e.g. ) or indi-

rect, e.g. , where the target is loaded from the effective address. 

Sparse  statements 

A sparse statement is impractical to be translated into a jump table and the obvious 

 doesn’t benefit from compiler magic. Such a sparse  can be translated into a bi-

nary tree which has logarithmic performance. 

                                                             

16 “Don’t repeat yourself”  
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Procedure call and return 

The stack is a part of the memory which is managed with 

stack discipline thus making it a bit different from “normal” 

memory. The stack grows toward lower address. It is used 

to save registers when calling procedures, store return val-

ues, and pass arguments (if there are more than 6 argu-

ments). 

To read and write from and to the stack, push and pop op-

erations are used. These operations increment (pop) or dec-

rement (push) the stack pointer by a number of bytes (using 

the same syntax like the move instruction) and read 

from/write to the only argument supplied to the instruc-

tion. 

A procedure in Assembly is 

called using . This 

pushes the return address onto the stack and jumps to 

. To return simply  is called which pops the address 

from the stack and jumps to that address. 

A full stack frame contains (in top-to-bottom order) the argument build, locale variables (if not in 

registers), the saved register context, and the old frame pointer – all in the current stack frame. 

And the caller stack frame contains the return address and arguments for this call. It is pushed by 

the  instruction. 

x86_64 calling conventions 

Say procedure  contains a call to procedure . This makes foo  the caller of , 

which is the callee. To ensure data integrity, there are “caller save” (caller saves temporary in its 

frame before calling) and “callee save”17 (callee saves temporary in its frame before using) regis-

ters. 

A few interesting features of the stack frame: 

- An entire frame is allocated at once: everything can be accessed relative to the stack pointer 

. The allocation can be delayed by temporarily using the red zone18. 

- Deallocation is simple: the stack pointer is incremented; no need for base/frame pointer. 

Slides 65 f. omitted due to non-comprehension of the writer of this document. Any input is appreci-

ated! 

                                                             

17 “save”, not “safe”! 
18 “In computing, a red zone is a fixed-size area in a function's stack frame beyond the return address which 
is not preserved by that function. The callee function may use the red zone for storing local variables with-
out the extra overhead of modifying the stack pointer. This region of memory is not to be modified by inter-
rupt/exception/signal handlers. The x86-64 ABI used by System V mandates a 128-byte red zone, which 
begins directly after the return address and includes the function's arguments.” (Wikipedia) 
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9 Compiling C Data Structures 

One-dimensional array 

Before we can have a look at how one-di-

mensional arrays are compiled, we need to 

have a recap the different amounts of bytes 

required for each numerical datatype. In-

tegral types are stored and operated on in 

general integer registers and whether they 

are treated as signed or unsigned depends 

on the instructions used. Floating points 

numbers are stored and operated on in 

floating point registers. 

To allocate an array  defined as 

 of datatype  and length , a 

contiguous region in memory of 

size  bytes is allo-

cated. As an example, an array 

 needs 12 bytes whereas 

 requires 24 bytes on 

x86-64. 

Arrays in C-Assembly combination 

can also be used as pointers or ra-

ther elements of arrays can be accessed using pointer arithmetic. Note however, no bound check-

ing is performed, out-of-range behavior is implementation-dependent, and different arrays may 

not be allocated in the same relative order. When accessing an array in Assembly, a common strat-

egy is to have the starting address in one array and the index in another array, and then use a 

memory reference with the scale factor set to the size of an array element. 

Nested arrays 

A definition like  is an array of , contiguously allo-

cated elements whereas each element is an array of  elements 

of type , also allocated contiguously. Every element of  re-

quires  bytes resulting in a total array size of  bytes. This 

row-major ordering of all elements is guaranteed. The starting 

address of a row  is given by  and its type (of ) is simply an array of  elements of 

type . Accessing an element of a nested array in Assembly is similar to one-dimensional arrays, 

except for an additional row offset multiplication. Pointer arithmetic allows “strange” arrays indi-

ces such as  to be used and produce a valid and expected result. 

Multi-level arrays 

Multi-level arrays (also jagged arrays or arrays of arrays) are, as the name implies, an array of 

arrays. This means, the “first level” of arrays are pointers which point to arrays of some type . 

This adds a level of indirection and thus requires to memory reads one to get to pointer to the row 

arrays and the other one to access the element within the arrays. 

 Intel GAS Bytes C 
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 Nested arrays Multi-level array 

Strengths - The C compiler handles doubly 
subscripted arrays 

- Very efficient code is generated 
- The multiply in index computation 

is avoided 

- Can create a matrix of any size 

Limitations - Only works for fixed size arrays - Index computation has to be done 
explicitly when programming 

- Accessing a single element is costly 
- Involves multiplication 

ures 

Structures are contiguously allocated regions of memory with members, which are references by 

names, of possibly different types. The offset of each structure member is determined at compile 

time (see next section) and thus also the pointer to each element. 

Alignment 

General rule: if a primitive data type requires 𝑲 bytes, the address must be a multiple of 𝑲 (this 

varies by architecture and OS)19. This allows memory to be access by aligned chunks of 4 or 8 

bytes, also because it is inefficient to load/store datum20 which spans quad word boundaries.21 

The compiler inserts gaps in a structure to ensure correct alignment of fields. 

These alignment rules have to be satisfied within a structure but also overall; each structure has 

an alignment requirement  (initial address and the length of the structure have to be multiples 

of ) where  is the alignment of its largest element. As a consequence, space can be saved by e.g. 

putting large datatypes first in the structure’s definition. 

                                                             

19 This implies for a datatype of size 2𝑛 to be aligned with the lowest 𝑛 bits of the address to be . In the case 
this holds for  (1 byte),  (2 bytes),  and  (4 bytes), and double and * (8 bytes), 
but not for   on Linux (16 bytes, yet aligned to 8-byte boundary). 
20 “datum” is the singular of “data” 
21 Virtual memory is very tricky when a datum spans 2 pages. 
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Arrays of ures 

In an array of structures, alignment requirements have to be satisfied for every element. 

Unions 

Unions are allocated according to the largest element and only one field 

can be used at a time. 

10 Code Vulnerabilities 

Worms and Viruses 

A worm is a program which can run by itself and can propagate a fully working version of itself 

to other computers. This in stark contrast to a virus which adds itself to other programs and can-

not run independently. 

Stack overflow bugs 

Consider the Unix implementation of . It 

completely lacks any limit on the number of 

characters to be read, just like similar functions 

like  or the  family with . This 

weakness combined with a too small buffer can 

lead to a stack overflow (manifested in a segmen-

tation fault). While a crash is simply annoying, 

this strategy can also be exploited to overwrite 

the return address of a function to an address within the buffer and thus making the program 

jump to the exploit code. 

Stopping overrun bugs 

Exploits such as the above can be prevented by using library routines which limit string lengths 

(  instead of ,  instead of ). Additonally, there are now system-level protec-

tions in place which e.g. randomize stack offsets which makes address prediction harder. There 

are also non-executable code segments. 

XDR 

Omitted. 

11 Memory Allocation 

“Sizes of needed data structures may only be known at runtime.” 

Successful: returns a pointer to a memory block of at least 
size bytes (typically) aligned to 8- or 16-byte boundary. If 

, returns  
Unsuccessful: returns  and sets  

Returns the block pointed at by p to pool of available 
memory.  must come from a previous call to  or 

 

Changes size of block  and returns pointer to new block. 
Contents of new block unchanged up to min of old and 
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new size. Old block has been 'd (logically, if ) 

The problem 

Assume: memory is word addressed and each word can hold a pointer, which in x86-64 is 64 bits. 

A program can issue an arbitrary sequence of  and 

 (only to previously ’d blocks) requests. An 

allocator has no control over the number or size of the al-

located blocks yet has to respond immediately to  

(no reordering/buffering possible) while also aligning the 

blocks correctly. Of course, only free memory can be ma-

nipulated and blocks can’t be moved once ’d (no 

compaction possible). 

One performance goal is throughput i.e. for a given se-

quence of  and  requests to maximize through-

put and maximize peak memory utilization, which are of-

ten conflicting. The throughput is the number of completed 

requests per unit of time. 

The other performance goal, peak memory utilization re-

quires some level of formalism: 

- Given some sequence 𝑅𝑖 , 𝑖 ∈ [0, 𝑛 − 1] of  and  requests. 

- The aggregate payload 𝑃𝑘 is defined as:  results in a block with a payload of  bytes. 

After request 𝑅𝑘  has completed, the aggregate payload 𝑃𝑘  is the sum of currently allocated 

payloads i.e. all ’d stuff minus all ’d stuff.  

- The current heap size 𝐻𝑘 : assume 𝐻𝑘  is monotonically non-decreasing (it grows when the 

allocator uses ). 

- The peak memory utilization after 𝒌 requests: 𝑈𝑘 = max
𝑗<𝑘

𝑃𝑗 /𝐻𝑘  

One cause for poor memory utilization is fragmentation which can either be internal or exter-

nal. 

For a given block, internal fragments occurs if the payload is smaller than the block size. This is 

caused by the overhead of maintain heap data structure, padding for alignment purposes, or ex-

plicit policy decisions. Therefore this kind of fragmentation depends only on the pattern of previ-

ous requests which makes it easy to measure. 

External fragmentation on the other hand depends on the pattern of future requests which makes 

it difficult to measure. It occurs when there is enough aggregate heap memory but no single free 

block is large enough. 

To know how much to free, the standard method is to keep the length of a block in the word pre-

ceding the block (called header field or just header). This, obviously, requires an extra word for 

every allocated block. To keep track of free lists, the following methods can be used: 

Method 1: Implicit list using length – links all blocks 

Method 2: Explicit list among the free blocks using pointers 

Method 3: Segregated free list (different free lists for different size classes) 

Implementation Issues 

- How to know how much 

memory is being ’d 

when it is given only a pointer 

(and no length)? 

- How to keep track of the free 

blocks? 

- What to do with extra space 

when allocating a block that 

is smaller than the free block 

it is placed in? 

- How to pick a block to use for 

allocation – many might fit? 

- How to reinsert a freed block 

into the heap? 
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Method 4: Blocks sorted by size (this can use a balanced tree (e.g. red-black) with pointers 

within each free block and the length used as a key)  

Implicit free lists 

For an implicit free list to work, to pieces of infor-

mation per block need to be stored: its length and 

whether it’s allocated. To save one word and only use 

a single word to store this information, the following 

trick is used: if the blocks are aligned, some low-order 

address bits are always 0, making it perfect to be used 

as an allocated/free flag; it only has to be masked out 

when reading the word.22 

For exercise purposes, the following encoding is often 

used: . The end of the list is marked by . 

S
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First fit Next fit Best fit23 

Search the list from the be-
ginning and choose the 
first block which fits. 
While it works, it can take 
linear time in the amount 
of total blocks. It can also 
cause splinters at the be-
ginning of the list. 

Similar to first fit but the 
search is continued where 
the previous one left off. 
This should be faster than 
first-fit since unhelpful 
blocks aren’t rescanned yet 
fragmentation might be 
worse. 

The whole list is searched 
for the “best” block where 
“best” refers to a block 
which fits with the fewest 
bytes left over. This keeps 
fragments small (less frag-
mentation) but is slower 
than first fit. 

 
When a free block is found it can either be allocated in full or split. Splitting makes sense when 

allocated space is smaller than free space. 

To free a block, it suffices to clear the allocated flag yet this could lead to so called “false fragmen-

tation” which results in having free space which isn’t found by the allocator. 

Coalescing 

Coalescing is the process of joining a block with the next/previous block 

given it is free. This is done to have larger free blocks. To perform bidirec-

tional coalescing, boundary tags are used. They replicate the size/allocated 

information at the bottom/end of free blocks which allows the list to be trav-

ersed backwards (but requires extra space and leads to internal fragmenta-

tion). 

Coalescing is either immediate (after ) or deferred (e.g. when the list 

is scanned for  or at an external fragmentation threshold). 

                                                             

22  
23 This is approximated by segregated free lists without having to search the entire free list. 
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Explicit free lists 

Instead of maintaining a list of all blocks, only free blocks are tracked. And 

since the next free block could be anywhere, not only sizes but also forward 

and backward pointers need to be stored but since only free blocks are 

tracked, the payload area can be used for the pointers. Boundary tags are still 

necessary for coalescing. 

A newly freed block can be inserted into the list using different policies. 

Policy LIFO Address-ordered 

 Insert freed block at 
the beginning of the 
free list 

Insert freed blocks so that free list 
blocks are always in address order: 
addr(prev) < addr(curr) < addr(next) 

Pro Simple and constant 
time 

Requires search 

Con Studies suggest frag-
mentation is worse 
than address ordered 

Studies suggest fragmentation is lower 
than LIFO 

Segregated free lists 

For every size class of blocks there exists a 

separate free list. Often small blocks have 

one list for each size whereas larger sizes are 

grouped by powers of two. 

To allocate a block of size 𝑛 the appropriate 

free list is searched for a block of size 𝑚 > 𝑛. 

If a block is found, the block is split and the fragment is (optionally) placed on the appropriate list. 

If no block is found, the next larger class will be tried. If, even after repeating this process, no block 

is found, additional heap memory from the OS is requested and allocate a block of 𝑛 bytes in this 

new memory, placing the remainder as a single block in the largest size class. When freeing a 

block, the memory is coalesced and (optionally) placed on the appropriate list. 

Advantages of seglists are higher throughput (logarithmic time for power-of-two classes) and bet-

ter memory utilization because the first-fit search of a segregated list approximated a best-fit 

search of the entire heap; in the extreme case where every block has its own size class, it is equiv-

alent to best-fit. 

Garbage collection 

Garbage collection is the process of automatically (implies: the application doesn’t have to free 

the memory by itself) reclaiming heap-allocated storage. While it is not possible to predict the 

future i.e. know what is going to be used depends on conditionals, if a block doesn’t have any 

pointers to it, it can be assumed it will not be used anymore. This requires certain assumptions 

about pointers. First of all, the memory manager needs to be able to distinguish between pointers 

and non-pointers. Secondly, all pointers have to point to the start of the block. And lastly, pointers 

cannot be hidden (e.g. by coercing them to an ). 
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Let the memory be a graph 

with each block being node 

and each pointer being an 

edge. Furthermore loca-

tions in the heap which 

contain pointers into the 

heap are called root nodes 

(e.g. registers, locations on 

the stack, global variables). A node is said to be reachable if there is a pat from any root to that 

node. Otherwise it’s garbage. 

To implement a Mark and Sweep garbage collector you can build on top of the /  

package.  is called until it runs of out space. When that happens, the extra mark bit in the 

head of each block is used in a two-step process. 

1. Mark: start at the roots and set mark bit on each reachable block 

2. Sweep: scan all blocks and free blocks that are not marked 

For a simple implementation, the following is assumed: 

- : returns pointer to a 

new block with all locations 

cleared 

- : read location  of 

block  into register 

- : write  into 

location  of block  

Each block will have a 

header word which is ad-

dressed as  for 

block  (different uses in 

different collectors). 

- : determines 

whether  is a pointer 

- : returns the 

length of block , not includ-

ing the header 

- : returns all the 

roots 

 

Mark using depth-first traversal of the 

memory graph 

Sweep using lengths to find next block 

 
A conservative implementation of the mark & sweep algorithm in C uses  to determine 

whether a word is a pointer by checking if it points to an allocated block of memory. However, in 

C pointers can point to the middle of a block. To solve this problem (i.e. to find the beginning of a 

block) a balanced binary tree is used to keept rack of all allocated blocks (the key is the start-of-

block). Balanced-tree pointers can be stored in the header. 

Memory pitfalls 

Dereferencing bad point-
ers 
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Reading uninitialized 
memory 

Overwriting memory 

Referencing nonexistent 
variables 

Freeing blocks multiple 
times 
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Referencing freed blocks 

Failing to free blocks 

Memory leaks 

 
To find memory bugs, conventional debuggers such as  can be used or it can be done by debug-

ging  (e.g. UTorronto CSRO ) which wraps around  and performs boundary 

checking. There are  implementations which contain checking code. Further tools include 

binary translators (e.g. valgrind, Purify) and garbage collection (e.g. Boehm-Weiser Conservative 

GC). 

12 Linking 

Programs are translated and linked using a compiler driver. This process is called static linking. 

This compiler driver (e.g. ) first generates object files ( ) from source files ( ) by using 

translators ( ). These, separately compiled and relocatable, object files are then linked 

using a linker ( ) into a fully executable object file. This file contains code and data for all func-

tions defined in the source file. 

The advantage of linkers is modularity: instead of writing one huge program, it can be written as 

many small source files. It also enables the programmer the use common functions from libraries. 

Another advantage is efficiency: it is much faster to re-compile one file after changing it than the 

whole program. And by using libraries a lot of space can be saved. This is done by aggregating 

common functions into a single file which makes the executables only have code for functions they 

actually use (both in file and in memory). 

Linkers work in a two-step process: 
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Step 1: Symbol resolution: a program defines and references symbols (variables, func-

tions). These definitions are stored in a symbol table by the compiler. This table is an array 

of structs where each entry includes name, type, size, and location. The linker then asso-

ciates each symbol reference with exactly one symbol definition. 

Step 2: Relocation: during the relocation phase, separate code and data sections are 

merged into a single section. The symbols are relocated form the relative locations in the 

 files to their final and absolute memory locations in the executable. This of course re-

quires an update on all symbol references. 

Object files 

Relocatable object file ( ) Executable object file Shared object file ( ) 

Contains code and data in a 
form that can be combined 
with other relocatable object 
files to form executable object 
file. Each .o file is produced 
from exactly one source (.c) 
file 

Contains code and data in a 
form that can be copied di-
rectly into memory and then 
executed. 

Special type of relocatable ob-
ject file that can be loaded into 
memory and linked dynami-
cally, at either load time or 
run-time. 

 
ELF object file format 

ELF header Word size, byte ordering, file type ( ), machine type etc. 
Segment header table Page size, virtual address memory segments (sections), segment sizes 

Code 
Read only data: jump tables … 
Initialized global variables 
Uninitialized global variables, “block started by symbol”/”better save 
space”, has section header but occupies no space 
Symbol table, procedure and static variables names, section names 
and locations 
Relocation info for  section, address of instructions that will 
need to be modified in the merged executable 
Relocation info for  section, addresses of pointer data that will 
need to be modified in the merged executable 
Info for symbolic debugging ( ) 

Section header table Offsets and sizes for each section 

Linker symbols 

Global symbols External symbols Local symbols 

Symbols defined by module m 
that can be referenced by 
other modules. E.g.: non-

 C functions and non-
 global variables. 

Global symbols that are refer-
enced by module m but de-
fined by some other module. 

Symbols that are defined and 
referenced exclusively by 
module m. E.g.: C functions 
and variables defined with the 

 attribute. Local linker 
symbols are not local pro-
gram variables 

 
Additionally, these symbols are either strong or weak.  Strong symbols are procedures and ini-

tialized globals whereas weak symbols are uninitialized globals. 

The linker works through the symbols following three rules: 

Rule 1: Multiple strong symbols are not allowed. Each item can be defined only once. 
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Rule 2: Given a strong symbol and multiple weak symbols, choose the strong symbol. Ref-

erences to the weak symbol resolve to the strong symbol. 

Rule 3: If there are multiple weak symbols, pick an arbitrary one.24 

Global variables should be avoided if possible. Instead  could be used or the global variable 

should be initialized. If an external global variable is used,  should be used. 

Static libraries 

To package functions which are commonly used (e.g. math, I/O, memory management, string ma-

nipulation) by programmers, statics libraries ( , for archive files) are used ideally. They concat-

enate related relocatable object files into a single file with an index (aka archive). The linker now 

also looks in these archives when resolving unresolved external references. Should an archive file 

member resolve the reference, it is linked into the executable. When creating25 such an archive, 

the archiver allows for incremental updates. 

To use static libraries, the linker’s algorithm works as follows: 

- Scan  and  files in the command line order 

- During the scan, keep a list of the current unresolved references 

- As each new  or  file, , is encountered, try to resolve each unresolved reference in the 

list against the symbols defined in . 

One of the problems is the command line order being relevant. This can be “solved” by putting 

libraries at the end of the command line. 

Shared libraries 

Static libraries have a few disadvantages: there is some level of duplication in the stored executa-

bles (e.g. due to ) which leads to duplication in the running executables. And since they are 

loaded/linked statically, a minor bug fix in a system library requires each application to explicitly 

relink. The solution is to use shared libraries (aka dynamic link libraries, DLL, ). The object 

files containing code and data are linked into the application dynamically, either at load-time or at 

run-time. 

Using load-time linking the linking happens when the executable is first loaded. This is the com-

mon case for Linux and handled automatically by the dynamic linker (e.g. for libc.so). 

When using run-time lining the dynamic linking occurs after the program has begin. This is done 

by the  interface and is commonly used in high-performance web servers and for runtime 

library interpositioning. 

Shared library routines can be shared by multiple process (cf. shared pages). 

                                                             

24 This can be overridden with  
25  
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13 Floating Point 

Representing floating-point numbers 

Using fractional binary numbers (∑ 𝑏𝑘 ⋅ 2
𝑘𝑖

𝑘=−𝑗 ) allows for easy divide and multiply operations 

(using shifts) but they can only exactly represent numbers of the form 𝑥/2𝑘 . That’s why a standard 

was desperately needed 30 years ago and IEEE 754 was born. 

Numerical form Encoding 

(−1)𝑠𝑀2𝐸 with sign bit 𝑠, significand (or mantissa) 𝑀 
(normally a fractional value ∈ [1.0,2.0)) and exponent 
𝐸 which values it by a power of two 

The MSB is the sign bit 𝑠, followed by 
 which encodes 𝐸, and  which 

encodes 𝑀. 

Types of IEEE floating-point numbers 

Different types of IEEE floating point numbers offer different precisions: 

Name Total bits 

IEEE 754 Single Precision 1 8 23 32 
IEEE 754 Double Precision 1 11 52 64 
Intel Extended Precision 1 15 63 80 
IEEE 754 Quadruple Precision 1 15 112 128 

 
In C there are only two guaranteed levels,  and . The type  can be any 

non-single-precision type. Casting between , , and  changes the bit representation. 

Converting to  truncates the fractional part (“round towards zero”) and is undefined when out 

of range/NaN. Converting  to  is exact provided the  has less or equal to 53 bits word 

size. Converting to a  rounds according to rounding mode. 

 Normalized values Denormalized values Special values 

Condition 
 Exponent is coded as a biased 

value: 
- E = Exp − Bias 
- Exp: unsinged value of exp 
- Bias = 2e−1 − 1 where e is 

the number of exponent 
bits (see table below) 

Singified is coded with implied 
leading 1: M = 1. xxx…x2 
- xxx…x are the bits of frac 
- Minimal when 000…0 (M =

1.0) 
- Maximal when 111…1 

(M = 2.0 − 𝜀) 

Exponent value: E =
−Bias + 1  (instead of 
E = 0 − Bias) 
Significand coded with 
implied leading 0, M =
0. xxx …x2 
Cases: 
- : 

value 0 (actually 
±0, both exist) 

- : 
numbers very 
close to 0.0, lose 
precision as they 
get smaller; eq-
uispaced 

Cases: 
- : 

represents ∞  for 
overflowing oper-
ations; negative 
and positive exist 

- : 
Not-A-Number 
(NaN); for when 
no numeric value 
can be deter-
mined 

 
Precision Bias Exp range E range 

Single 127 1…254 -126…127 
Double 1023 1…2046 -1022…1023 

 
Example 
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Floating point comparison is very similar to unsigned integer comparison save for a few details: 

Sign bits have to be compared first, +0 and -0 have to be taken into account, and NaNs are prob-

lematic since they are greater than any other value. 

Floating-point ranges  

This section is about a small example from the slides. The first image is 

about the first format, the second two images about the second format 

(pictured on the right). 

 

  

Floating-point rounding 

When performing floating point operations which require rounding, the exact result is computed 

first, and then it is fit into desired precision (which might overflow if the exponent is too large). 

IEEE FP uses round-to-even by default (no statistical bias) which when exactly hallway between 

two possible values rounds so that the least significant digit is even. 

Creating a floating point number is a three-step process: 

1. Normalize to have a leading 1 (left shifts, decrement exponent) 
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2. Round to fit within fraction  

Consider the image on the right: if 

 and  are 1, the value is > 

0.5 and rounded up. If  and  are 1 but  is 0, it rounds to even. 

3. Postnormalize to deal with effects of rounding (right shifts, increment exponent) 

Floating-point addition and multiplication 

 Multiplication Addition 

Problem statement (−1)𝑠1 𝑀1 2
𝐸1 × (−1)𝑠2 𝑀2 2

𝐸2

= (−1)𝑠 𝑀 2𝐸  

(−1)𝑠1 𝑀1 2
𝐸1 + (−1)𝑠2  𝑀2 2

𝐸2

= (−1)𝑠 𝑀 2𝐸  
Exact result 𝑠 = 𝑠1^𝑠2 

𝑀 = 𝑀1 ⋅ 𝑀2 
𝐸 = 𝐸1 + 𝐸2 

𝐸 = 𝐸1 

 
Fixing - If 𝑀 ≥ 2, shift 𝑀 right, incre-

ment 𝐸 
- If 𝐸 out of range, overflow 
- Round 𝑀 to fit  precision 

- If 𝑀 ≥ 2, shift 𝑀 right, incre-
ment 𝐸 

- If 𝑀 < 1 , shift 𝑀  left 𝑘  posi-
tions, decrement 𝐸 by 𝑘 

- Overflow if 𝐸 out of range 
- Round 𝑀 to fit  precision 

Monotonicty 
(except for ∞, NaN) 

𝑎 ≥ 𝑏 ⇒ 𝑎 + 𝑐 ≥ 𝑏 + 𝑐 𝑎 ≥ 𝑏 ∧ 𝑐 ≥ 0 ⇒ 𝑎 ⋅ 𝑐 ≥ 𝑏 ⋅ 𝑐 

 

Floating-point puzzles 

Omitted. 

SSE floating point 

Omitted. 

14 Optimizing Compilers 

The compiler is your (shy) friend! – Prof. Roscoe 

Where compilers are good and where they run into limitations: 

Strong suits Pitfalls Limitations 

Mapping program to 
machine: 
- register allocation, 

scheduling  
- dead code elimina-

tion  
- minor inefficien-

cies elimination 

Improving asymptotic ef-
ficiency: 
- programmer has to se-

lect best overall algo-
rithm 

Overcoming optimization 
blockers: 
- memory aliasing 
- procedure side-effects 

If in doubt, the compiler is conservative 
Fundamental constraints: 
- must not change program behavior 

under any condition 
Behavior obvious to programmer bay be 
obfuscated by languages and coding 
styles 
Analysis is performed only within pro-
cedures and based on static information 

Removing unnecessary procedure calls 

Procedure calls and bound checking can be expensive and abstract data types can lead to ineffi-

ciencies. If possible and reasonable they should be considered to be removed/inlined. Addition-

ally, watch your innermost loop. 
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Code motion and precomputation 

Sometimes the same result gets computed over and over again. This frequency may be reduced 

by moving code out of a loop (provided the result stays the same). The compiler might do this for 

you. 

Strength reduction 

A costly operation (e.g. multiplication) can be replaced by a simpler one (e.g. shift). The usefulness 

of this optimization depends on the machine. 

Common subexpressions 

Compilers are very bad at exploiting arithmetic properties which e.g. for grid-based coordi-

nate/index calculations (matrix-like e.g. image) are heavily used. In such as a scenario it makes 

sense to explicitly define and calculate common subexpressions. 

Optimization blocker: procedure calls 

When the compiler cannot be absolutely sure a procedure will always produce the same result in 

a loop, it will not inline it and thus call it on every loop iteration. Provided the result doesn’t change 

(as regarded by the programmer) this procedure call can and should be moved outside of the loop. 

Compiler usually treats procedure call as a black box that cannot be analyzed. 

Optimization blocker: memory aliasing 

Two different memory references can write to the same location which can easily be achieved in 

C. This can be solved by replacing scalars in the innermost loop and copying memory variables 

which are reused into local variables. 

Blocking and unrolling 

Omitted, see Unrolling, reassociation, multiple accumulators: the code on page 31 (on page 31) 

15 Architecture and Optimization 

A (brief) recap of sequential processor design 

A (brief) recap of pipelined processor design 

Omitted.26 

Superscalar processor design 

Definition: A superscalar processor can issue and execute multiple instructions in one cycle. The 

instructions are retrieved from a sequential instruction stream and are usually scheduled dynam-

ically. Benefit: without programming effort, a superscalar processor can take advantage of the in-

struction level parallelism that most programs have. 

Superscalar performance 

While some instructions take more than one cycle, they can be pipelined (this is also a major prob-

lem for fast execution: the pipelines have to be kept full). Hard bounds on cycles needed are given 

by how many cycle an operation itself takes. 

                                                             

26 See also: http://studysheets.ch/sheets/digitaltechnik/download  

http://studysheets.ch/sheets/digitaltechnik/download
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Micro-ops and dataflow 

When executing a program, the instructions bytes are fetch from memory and the hardware dy-

namically guesses branches taken/not taken. Instructions are translated into micro-operations 

(for CSIC CPUs) which are basically RISC operations for every primitive step performed in the 

instruction. An instructions typically requires 1-3 micro-ops. Register references are converted 

into tags as means of abstraction for combining with other operations. The goal is to have each 

operation utilize a single functional unit. 

Dataflow view of instruction execution: view each write as creating new instance of value, oper-

ations can be performed as soon as operands available, and no need to execute in original se-

quence. 

Reassociation 

Omitted, see Unrolling, reassociation, multiple accumulators: the code on page 31 (below). 

Combining multiple accumulators and unrolling 

Omitted, see Unrolling, reassociation, multiple accumulators: the code on page 31 (below). 

Branch prediction 

The Instruction Control Unit must work well ahead of Execution Unit to generate enough oper-

ations to keep the EU busy. When the ICU encounters conditional branch, it cannot reliably deter-

mine where to continue fetching. A solutions is to guess the branch and begin executing instruc-

tions at predicted position but not to actually modify any register or memory data. The resulting 

branch misprediction penalty is a cost of multiple cycles on a modern processor and can limit 

performance a lot. 

Unrolling, reassociation, multiple accumulators: the code 

Description Code 

Original code 

Loop unrolling 
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Loop unrolling with reassociation 

Loop unrolling with separate accu-
mulators 

16 Caches 

Definition: Computer memory with short access time used for the storage of frequently or re-

cently used instructions or data. 

Hits and misses 

Say you want to retrieve data in block b. If said block is in the cache, it is called a hit, and a miss 

otherwise. When a miss occurs, block b is fetched from memory and stored in cache according to 

placement (where) and replacement (victim of eviction) policies. There are some metrics 

which can be used to measure cache performance: 

- Miss rate27: the fraction of memory references not found in cache; typically 3%-10% for L1, 

<1% for L2  

(misses/accesses) = 1 − hit rate 

- Hit time: the time to deliver a line in the cache to the processor (incl. time to determine 

whether line is in the cache); typically 1-2 cycles for L1, 5-20 for L2 

                                                             

27 Reason why miss and not hit rate is used: when the miss penalty is large (e.g. 100 cycles for a cache hit 
time of 1 cycle), 99% hits is double as good as 97%. 
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- Miss penalty: additional time required because of a miss; typically 50-200 cycles for main 

memory (trend: increasing) 

There are, of course, different types of cache misses: 

- Cold (compulsory): occurs on first access to a block 

- Conflict: most caches limit blocks to a small subset of the available cache slots (e.g. modulo 

the address). Thus conflict misses occur when there is enough space but multiple data maps 

to the same slot 

- Capacity: active cache blocks (working set) is large than the cache 

- Coherency: (see later in this chapter) 

The memory hierarchy 

Some slides which I consider to be obvious for a 3rd semester computer science student are omitted. 

Memory hierarchy of 

the Intel® Core™ i7-6700K 

CPU (Skylake architecture) is pic-

tured on the right. 

The reason why 

caches work is be-

cause they exploit lo-

cality: temporal lo-

cality refers to the fact recently referenced items are likely to be referenced again in 

the near future and spatial locality exploits the fact items with nearby addresses 

tend to be referenced close together in time. 

Spatial locality can be used by the programmer to speed up their code. The typical 

example of good vs. bad locality (assuming a “typical” computer) is two for loops iterating over a 

matrix in either row-major (good) or column-major (bad) order. 

Cache organization 
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Cache reads 

To read data from the cache, a sequence of operations is performed. First the set is located, then 

it checks whether any line in the set has a matching tag. If so, it is a sit and data starting at the 

offset is located. If there is no match, what happens next depends on the type of cache: 

- Direct mapped: has one line per set (𝐸 = 1) and simply evicts the old line and replaces it with 

the new data 

- 2-way set-associative: has two lines per set (𝐸 = 2) and selects one line the set for eviction 

and replacement. Selecting the line is according to the replacement policy (random, LRU, …) 

Cache writes 

Write-hit Write-miss 

Write-through 
- Write immediately to memory 
- Memory is always consistent with the 

cache copy 
- Slow: what if the same value (or line!) is 

written several times 

No-write-allocate (writes immediately to 
memory) 
- Simpler to implement 
- Slower code (bad if value subsequently re-

read) 
- Seen with write-through caches 

Write-back 
- Defer write to memory until replacement 

of line 
- Need a dirty bit (indicates line is different 

from memory) 
- Higher performance (but more complex) 

Write-allocate (load into cache, update line in 
cache) 
- Good if more writes to the location follow 
- More complex to implement 
- May evict an existing value 
- Common with write-back caches 

 
Software caches (e.g. file system buffer, web browser cache) are much more flexible, often fully 

associative (using index structures like hash tables), are not necessarily constrained to block 

transfers, but often have complex replacement policies (also because misses can be very expen-

sive). 

Cache optimizations 

To optimize the use of the cache, code should make use of spatial (access data contiguously) and 

temporal (access to the same data should not be too far apart in time) locality. This can be achieved 

by the proper choice of algorithm and loop transformations. The register space much smaller 

[than the cache] and requires scalar replacement to exploit temporal locality. Register level opti-

mizations include exhibiting instruction level parallelism (which conflicts with locality). 

Blocking 

Omitted. 

17 Exceptions 

To change the daily stone-grind-

ing of a processor (i.e. read and 

execute a sequence of instruc-

tions, one after the other, also 

called control flow), 

jumps/branches and calls/re-

turns can be used. To make the 

control flow exceptional, excep-

tions can be used. They react to change in the system state such as data arriving from drive or 
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network, division-by-zero, Ctrl-C input, and the system timer. Exceptions exist at all levels of a 

computer system – low-lever (hardware + OS) and higher level (context switch, signals, non-local 

jumps, and language-level exceptions). 

Exception vectors and kernel mode 

Each type of event has a unique exception number 𝑘, whereas 𝑘 is an index into the exception 

table (aka interrupt vector). Handler 𝑘 is called each time exception 𝑘 occurs. When an exception 

occurs, the system enters kernel28 mode.  

Synchronous exceptions 

Synchronous exceptions are caused by events that occur as a result of executing an instruction. 

They can be grouped into the following three categories: 

Traps Faults Aborts 

- Intentional 
- E.g. syscalls, breakpoints, 

special instructions, open-
ing a file 

- Control is returned to next 
instruction 

- Unintentional but possibly recover-
able 

- E.g. page faults, protection faults, FP 
exceptions, invalid memory refer-

ence (→ segfault) 

- Either re-execute current (faulting) 
instruction or abort 

- Unintentional 
and unrecover-
able  

- E.g. parity er-
ror, machine 
check 

- Aborts current 
program 

Asynchronous exceptions 

Asynchronous exceptions, also called interrupts, are caused by events external to the processor 

and are indicated by setting the processor’s interrupt pin. Examples include I/O such as Ctrl-C, an 

arriving network packet or data being ready from disk, and hard and soft reset interrupts. The 

handler returns to the next instruction. 

Interrupts (whose mechanism is also used for exceptions) work as follows: 

1. The CPU interrupt-request line is triggered by an I/O device (edge or level-triggered) 

2. The interrupt handler receives the interrupt 

3. The interrupt might be maskable which allows it to be ignored or delayed 

4. The interrupt vector is used to dispatch the interrupt to the correct handler (based on 

priority) 

Rest of this sub-chapter is omitted. 

Interrupt controllers 

Programmable interrupt controllers solve the problem of e.g. interrupt conflicts and simultane-

ous interrupts.  They map (mapping picked by the OS) physical interrupt pins to interrupt vec-

tors, buffer simultaneous interrupts (deliver each vector separately and make sure not to lose 

some device’s interrupt), prioritize interrupts (some devices may interrupt other devices; se-

                                                             

28 The kernel is the part of the OS which runs in kernel mode. Kernel mode means there’s access to system 
state, some different instructions/registers, different MMU behavior, some exceptions are disabled etc. A 
kernel always is a set of trap handling functions and creates the user-space processes illusion. See also 
http://studysheets.ch/sheets/operating-systems/download  

http://studysheets.ch/sheets/operating-systems/download
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lected by the OS), and selectively mask any individual device’s interrupts (useful for high-inter-

rupt rate devices and at boot). Modern PICs also provide inter-processor interrupts, a program-

mable timer, sophisticated interrupt scheduling etc.  

18 Virtual Memory 

Since this was already discussed in the previously mentioned “Operating Systems and Networks” 

course, I might be a little short on detailed explanations. 

The problems with physical memory 

1. 64-bit addresses result in 16 EB memory, but 

physical main memory is often just a few GB 

2. Memory management: what goes where? 

3. Protect memory from other processes 

4. Share memory with other processes 

Solution: address translation 

Each process gets its own private memory space – which basically solves all four problems above. 

- Linear address space: ordered set of contiguous non-negative integer addresses, {0,1,2,3, … } 

- Virtual address space: set of 𝑁 = 2𝑛 virtual addresses, {0,1,2,3, … ,𝑁 − 1} 

- Physical address space: set of 𝑀 = 2𝑚  physical addresses, {0,1,2,3, … ,𝑀 − 1} 

Every byte in main memory has one physical and one or more virtual address. This is managed by 

the memory management unit (MMU), which also performs cache-checking. 

 

The advantages of virtual memory (VM) are numerous: it makes more efficient use of the limited 

RAM available (with e.g. paging), it simplifies memory management for programmers, and isolates 

address spaces. 

Some uses of virtual memory 

1. Caching: blocks of memory called pages are stored on disk (as virtual pages) and cached 

in DRAM (as physical pages). DRAM is about ten times slower than SRAM while still being 
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10,000 times faster than an HDD29. As a consequence, block sizes are rather big, the cache 

is fully associative with highly sophisticated and expensive replacement algorithms, and 

tends to be write-back. The reason this works is locality. The set of active virtual pages is 

called working set. 

2. Memory management: each process has its own virtual address space and thus views 

memory as a simple linear array (yet in reality it’s scattered all over the place). Each vir-

tual page can be mapped to any physical page and can be stored in different physical pages 

at different times. This allows code and data to be shared among processes. 

3. Simplify linking and loading: Linking: each program has a similar virtual address space 

(code, stack, and shared libraries always start at the same address). Loading:  

allocates virtual pages for  and  sections (= creates PTEs marked as invalid). 

The  and  sections are copied, page by page, on demand by the virtual memory 

system. 

4. Memory protection: extend PTEs with permissions bits which are checked by the page 

fault handler before remapping. If violated: SIGSEGV. 

The address translation process 

Page hit 
1. Processor sends virtual address 

to MMU 

2. MMU fetches PTE from page table 

in memory 

3. Same as 2. 

4. MMU sends physical address to 

cache/memory 

5. Cache/memory sends data word 

to processor 
 

Page fault 

 

1. Processor sends virtual address to MMU 

2. MMU fetches PTE from page table in 

memory 

3. Same as 2. 

4. Valid bit is zero, so MMU triggers page 

fault exception 

5. Handler identifies victim (and, if dirty, 

pages it out to disk) 

6. Handler pages in new page and updates 

PTE in memory 

7. Handler returns to original process, re-

starting faulting instruction 

                                                             

29 According to Prof. Hoefler fromt the mentioned “Operating Systems and Networks” course, this “maybe 
decreases by a factor of 10 for SSDs”. 
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Translation lookaside buffers 

The TLB is a small hardware cache in the MMU and maps VPNs to PPNs and contains complete 

PTEs for a small number of pages. 

A simple memory system example 

Omitted. Please have a look at slides 35 ff. 

Multi-level page tables 

A virtual page may refer to a page-aligned region of the virtual address space and contents thereof. 

A physical page is a page-aligned region of physical memory. A physical frame (= physical page) is 

an alternative terminology: page = contents, frame = container. 

For a 4KB page size, a 48-bit address space (used on 64-bit machines) and 8B PTE a page table of 

size 248B/212B ⋅ 23B = 239B = 512GB is required. To circumvent that problem, multi-level page 

tables are used. 

Case study of the Core i7 ™ virtual memory System 

Partly omitted. See slides 49 ff. 

Components of the virtual address (VA) Components of the physical address (PA) 

- TLBI: TLB index 
- TLBT: TLB tag 
- VPO: virtual page offset 
- VPN: virtual page number 

- PPO: physical page offset (same as VPO) 
- PPN: physical page number 
- CO: byte offset within cache line 
- CI: cache index 
- CT: cache tag 

 
Paging in x86-64 uses 48-bit virtual address (since 64 bits is a lot), 52-bit physical address (which 

equals 40 bits for PPN (4KB pages, 52 − log 4096 = 40)), and there are 512 entries per page 

(PT/PTE = 4096/8). 
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TLB entry:  

 

Page table entries: 

Level 4 

 
Level 3 

 
Level 2 

 
Level 1 

 
 
Flags in PTEs: 

- Avail: available for system programmers 

- G: global page (don’t evict from TLB on 

task switch) 

- PAT: Page-Attribute Table 

- PCD: cache disabled or enabled 

- PWT: write-through or write-back cache 

policy for this page 

- U/S: user/supervisor 
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- D: dirty (set by MMU on writes) 

- A: accessed (set by MMU on reads and 

writes) 

- R/W: read/write 

- P: page is present in physical memory (1) 

or not (0) 

Large pages 

Large pages are created by concatenating VPN4 and VPO which results in 21 bits = 2MB pages. If 

VPN3 is also used for the concatenation there are 30 available bits which result in a 1GB page, 

called huge page. 

Large and huge pages have advantage of terminating the page table walk early and simplify ad-

dress translation. They are useful for programs with very page, contiguous working sets (reduces 

compulsory TLB misses). 

Optimizing for the TLB 

Omitted. 

19 Multiprocessing 

Consistency and Coherence 

Coherency: values in caches all match each other and processors all see a coherent view of 

memory. Consistency: the order in which changes to memory are seen by different processors. 

Program order: the order in which a program on a processor appears to issue reads and writes 

(even on a uniprocessor this isn’t equal to the order the CPU issues these calls). This only refers 

to local reads/writes. Visibility order: the order which all reads and writes are seen by the pro-

cessor(s). This refers to all operations in the machine. Each processor reads the value written by 

the last write in visibility order. 

On modern machines most CPU cores are cache coherent which means they behave as if they were 

all accessing a single memory array. This makes programming easier but is hard to implement and 

memory is slower as a result. 

Memory consistency (i.e. what value is read by each processor) is very important but even a sim-

ple statement like “last value written” is hard to implement which is the reason for many different 

models.  

Sequential Consistency 

1. Operations from a processor appear (to all others) in program order. 

2. Every processor’s visibility order is the same interleaving of all the program orders. 

This requires each processor to issue memory operations in program order. The RAM has to have 

a total order on all operations and furthermore the operations have to be atomic. 

Advantages Disadvantages 

- Easy to understand for the 
programmer 

- Easy to write correct code to 
- Easy to analyze automati-

cally 

- Hard to build a fast implementation 
- Cannot reorder reads/writes, not even in the compiler 

and not even from a single processor! 
- Cannot combine writes to same cache line (write buffer) 
- Serializing ops at memory controller is too restrictive 

(see NUMA) 
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Cache coherence with snooping 

The cache snoops on reads/writes from other processors. If a line is valid in the local cache and 

another processor writes to that line, the local line is invalidated. This requires a write-through 

cache. The line can be valid in many caches until a write happens. 

Should the cache be write-back, the lines can have an additional “dirty” (modified) state, at maxi-

mum in one cache. This requires a cache coherency protocol such as MSI – Modified, Shared, and 

Invalid. The cache logic responds to processor/remote bus reads/writes, change cache line state, 

and write back data (flush) if required. 

 

Unfortunately, MSI has a few issues. In the “I” state when a write miss is executed it first needs to 

read the line and if someone else hast it in “M” state, it needs to wait for the flush to happen. When 

in the “M” state and another core observers a remote read the line has to be flushed (obviously) 

but now there’s an issue with invalidation: should the line be invalidated yet it was supposed to 

be shared, there’s an extra miss. When transitioning to a shared state however,  it might be remote 

write miss which then causes an extra invalidate. 

The MESI cache coherence protocol 

MESI has four states, a new signal, and a new 

bus signal: 

- Modified: only copy, dirty 

- Exclusive: only copy, clean 

- Shared: several copies, all clean 

- Invalid 

- HIT: signal to remote processor its read 

hit in the local cache 

- RdX (read exclusive): cache can load into 

either “S” or “E” state. Other caches can see 

the type of read. 

Observations: 

- Dirty data is always written though 

memory, there are no cache-cache trans-

fers which makes it an invalidation-based 

protocol 

- Data is always either dirty in one cache 

(needs to be written back before a remote 

read) or clean (can be safely fetched from 

memory). 

- MESI is good if the memory latency is a lot 

smaller than the latency of a remote cache 
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Partly omitted (MOESI, MESIF). 

Relaxing sequential consistency 

Ways to relax SC include: 

- Write-to-read: later reads can bypass earlier writes 

- Write-to-write: later writes can bypass earlier writes 

- Break write atomicity (no single visibility order) 

- Weak ordering: no implicit order guarantees at all 

Partly omitted (processor-specific ways to relax SC). 

Barriers and fences 

Gnerally, the weaker the consistency model is, the faster it goes in hardware. Visibility order is 

essential for the correct functioning yet difficult to guarantee (compilers, memory models). Bar-

riers (aka fences) are a very good solution. 

- Compiler barriers: prevent compiler reordering statements 

- Memory barriers: prevent CPU reordering instructions 

Multicore synchronization: Test-and-Set 

One of the simplest non-trivial atomic operations 

1. Read a memory location’s value into a register 

2. Store “1” into the location 

This requires a read-modify-write cycle (i.e. memory bus has to “locked” during instruction). It 

can also appear as a register. 
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TAS can be very expensive since the memory has to be 

locked while a long operation occurs, it has to do a read, fol-

lowed by a write while no-one else can access memory, and 

if it is spinning, it slows things down. As a alternative, “Test 

and Test-and-Set” can be used but to be able to use it, the 

programmer needs to understand a lot of the inner workings of a lot of things. Simply put: don’t 

use it, just don’t.30 

Compare and Swap 

CAS can implement almost all wait-free data structures for which it requires bus locking (or sim-

ilar) in the memory system. 

1. Load  into  

2. If  then store  to  

3. Return  

The general pattern where CAS is used is read-copy-update where writers take a copy, modify it, 

then write back the copy. The old version is deleted when all the readers are finished. 

Since CAS reports when a single location is different 

but does not report when it is written (with the same 

value), it suffers from the ABA problem. To solve this, 

the values has to change always. This is done by split-

ting the value into the original value and a monoton-

ically increasing counter. (Yet, everything can be done 

fast with CAS, if you’re slightly clever.) 

Simultaneous multithreading 

Cache-coherent SMP still has the memory as its bottleneck – all accesses to main memory stall the 

processor (even with MOESI, which allow reads to be serviced from another cache). And memory 

stalls halt the processor, also other processors which access memory. During these times when 

the processor is waiting for memory/another cache, most functional units are idle and many in-

structions do not require the memory unit, yet ILP is limited due to data dependencies. This leads 

to the idea of executing instructions in other threads (there are multiple fetch/decode units and 

registers) to reuse superscalar functional units. This is done by labelling instructions in hardware 

with a thread id. A CPU which does this appears as multiple CPUs to the OS. The benefit is around 

10-20% but since it’s cheap (transistor-wise) to implement, it’s worth it, especially for lots of 

memory-intensive requests (not so much scientific computing though). 

Non-Uniform Memory Access (NUMA) 

NUMA removes the memory bottleneck by having multiple, independent memory banks to which 

processors have independent paths. The interconnect is not a bus anymore but a network link 

(which passes messages). All memory is globally addressable but local memory is faster. 

NUMA cache coherence 

To ensure cache coherency in a NUMA environment, either the bus is emulated (similar to snoop-

ing but with messages) or a cache directory is used, where each entry consist of the cache line, 

                                                             

30 Just quoting slide 47… 

The “ABA” problem: 

1. CPU A reads value as x 

2. CPU B writes y to value 

3. CPU B writes x to value 

4. CPU A reads value as x  

⇒ concludes nothing has changed 
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the owner, and one bit per node indicating presence of this line in that node. This si useful when 

lines are not widely shared and when there are a lot of NUMA nodes since it reduces interconnect 

traffic and load at each node yet it requires lots of fast memory. 

Performance implications of multicore 

- Memory latency 

- Cache access latency 

- False sharing 

Optimization example: MCS locks 

Omitted. 

20 Devices 

Some parts of this chapter were copied shamelessly from http://studysheets.ch/sheets/operating-

systems/download. Inspiration came from the same behavior by Prof. Roscoe and Prof. Hoefler. 

To an OS programmer, a device is a piece of hardware visible from software occupying some loca-

tion on a bus. It also has a set of registers (which are memory mapped or in IO space) and is a 

source of interrupts. It also may imitate Direct Memory Access transfers. 

Device registers 

CPU can load from device registers: 

– Obtain status info 

– Read input data 

CPU can store to device registers: 

– Set device state and configuration 

– Write output data 

– Reset states 

Registers can be addressed in different ways: memory mapped31, using I/O instructions, or using 

indirection (to save I/O space). These registers do not behave like RAM since they might change 

without writes from the CPU and writes to these registers are used to trigger actions (e.g. send 

data, reset state machine …). 

The details of registers are given in chip “datasheets” or “data books” (this information is rarely 

trusted by OS programmers). A very simple UART (Universal asynchronous receiver/transmitter) 

driver might be using programmed IO (PIO): 

- CPU explicitly reads and writes all values to and from registers 

- All data must pass through CPU registers 

And uses polling: 

- CPU polls device register waiting before send/receive 

- Can’t do anything else in the meantime 

- Without CPU polling, no I/O can occur 

                                                             

31 cf. Digital Circuits class MIPS programming 

http://studysheets.ch/sheets/operating-systems/download
http://studysheets.ch/sheets/operating-systems/download
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Dealing with caches 

Dive register access must bypass the cache (PTEs have the “no cache” flag set) to avoid possible 

inconsistencies caused by non-CPU writes. Additionally write-back caches and write buffers can 

cause problems, and read and writes cannot be combined into cache lines. 

Direct Memory Access 

Direct Memory Access is used to avoid programmed I/O for lots of data (e.g. fast network or disk 

interfaces). This requires a DMA controller (which is generally built-in) and this bypasses the CPU 

to transfer data directly between I/O device and memory thus not taking up CPU time and might 

save memory bandwidth and there’s only one interrupt per transfer. There’s no need for the CPU 

to copy data which in turn does not pollute its cache. Memory can be accessed on demand and 

there is a performance gain because CPU and device work in parallel. 

 

Caches Virtual memory 
Due to DMA memory becomes inconsistent with CPU 

caches. This leaves these options: 

– CPU can map DMA buffers non-cacheable → large 

hit, probably wants to process data anyway 

– Cache can “snoop” DMAC bus transactions (but 

doesn’t scale beyond small SMP systems) 

– OS can explicitly flush/invalidate cache regions → 

cache management important part of device drivers 

DMA addresses are physical yet OS 

and user mostly deal with virtual ad-

dresses. This requires address trans-

lation, possibly more than just a 

hardware page table due to non-con-

tiguity of the physical address space. 

Newer systems provide an IOMMU, 

which does the same for the I/O de-

vices as MMU does for the CPU. 

Device drivers 

Driver and device are both state machines which need data to be transferred between each other 

and signals are used to signal state transitions. There are four states: write a device register, read 

a device register, device request interrupt, and shared memory (which is the only asynchronous 

state). 



Lecture Summary  Systems Programming and Computer Architecture on 1/28/2016 

Version 1.1b as of 1/4/2016 Page 46 of 48 

Buffer rings and descriptor rings 

The ring consists of either buffers in contiguous memory or pointers (descriptors) to other bits 

of memory. OS and device pointers move independently around the ring. This provides a buffer of 

packets and requires very little explicit coordination. Most modern devices deal with buffer de-

scriptors which offer – via a level of indirection – pointer area(s) of memory and metadata. This 

allows software more flexible data placement, variable sized buffers which can vary dynamically. 

Additionally, this does not require data and metadata to be mixed. 

What happens when one pointer catches up with the other? (overruns and underruns; this cor-

responds to producer-consumer queues using messages and interrupts and not by using 

mutexes/monitors/condition variables/threads) 

Transmit Receive 

Device has no more packets to send → it must 

wait 

- Could continue to poll memory until next 

descriptor is owned by it 

- Could go to sleep and signal the software 

to wake it up 

CPU has no more slots to send packets → must 

wait 

- Can spin polling, but inefficient 

- Signals device to interrupt it when a 

packet has been sent i.e. a buffer slot is 

now free 

Device has no buffers for received packets → 

starts discarding packets 

- Not as bad as it sounds 

- Will start copying them to memory when a 

buffer is free 

- Signals that it’s lost some in a status regis-

ter 

CPU reads all received packets → it must wait 

- Can spin polling, but inefficient 

- Signals device to interrupt it when a new 

packet has been received 

- Goes off to do something else 

More complex devices 

Omitted. 

Device initialization 

To initialize a device, the system and the device need to ensure state transitions are synchronized, 

which is done as follows: 

1. Wait for the hardware to settle down 

2. Stop the device doing anything, just to be sure: no interrupts, no DMA, no sending packets 

3. Create shared data structures: e.g. descriptor rings, must tell device where they are! 

4. Write registers to start device running 

I/O state machines (hardware side) 

1. DMA Read: descriptor 

2. If  then enter state “stopped” 

3. DMA Read: buffer 

4. Send packet 

5. DMA Write:  ← “ ” 
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6. Calculate next descriptor address: next in memory (for unchained) or value of buffer field 

2 (for chained mode) 

7. Go to 1. 

 

I/O state machines (software side) 

 

Since PCI-based DMA transfers are only coherent with CPU caches on x86, the following needs to 

be implemented: 

 DMA reads DMA writes 

Before CPU should flush the cache for that address 

→ main memory is up to date 
CPU should flush or invalidate cache → 

no dirty lines left to write to memory 
After CPU should invalidate cache for that ad-

dress → cache doesn’t hold old value 
CPU invalidates cache → cache doesn’t 

hold old value 

Discoverable busses: PCI 

Peripheral Component Interconnect (PCI) is an electrical standard for connecting devices., a 

standard for physical connectors, a set of bus protocols for inter-device communication, and a 

software-visible interface to I/O hardware. It tries to solve many problems: 
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– Device discovery: finding out which devices are in the system 

– Address allocation: which addresses should each device’s registers appear at? 

– Interrupt routing: which interrupt signals from the device should map to which exception 

vectors? 

– Intelligent DMA: “bus mastering” devices no longer need a DMA controller 

The connections are represented as a tree, the address space is flat. PCI devices are self-describing. 

To find all the devices, you first must find the PCI “root complex” bridge atop of the tree. Then the 

configuration is read to find all attached devices, add them to the list of devices and functions, and 

record requirements for address space – if it is a bridge, recurse. This results in a list of all devices, 

complete with their address space requirements. 

To allocate addresses, find address ranges for each device and bridge 

Requirements include: 

– Each device has the size of address ranges it needs 

– All devices “below” a bridge have ranges that fit into the bridge’s range 

– Each bridge has a range which includes all it’s “children”. 

– Each range is aligned to some power-of-2 boundary 

When these requirements are found, the following needs to be programmed: 

– Each PCI bridge with translation information 

– Each device with “base-address/range” (BAR) registers 

PCI interrupts 

Four interrupt lines 

– INTA, INTB, INTC, INTD… 

– Bridges allow arbitrary wiring 

of device lines to bridge lines 

– Translated by root bridge into 

system interrupt 

PCI Express introduces MSIs 

– Message-signaled interrupts 

– Interrupt encoded as PCI write to specified address 

range 

– Translated by root bridge into system interrupt 

– Interrupts can be individually steered to particular 

cores/APICs 

PCI allows bus mastering: a device can issue read/write transactions to anywhere in memory, 

even to other PCI devices. This makes external DMA controllers obsolete since the controller is 

effectively integrated with the device itself while still following the principle of the device DMA-

ing data to/from memory. This gives much more flexibility and allows for more intelligence. 

A quick look at the future 

Omitted. 
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in turn is partly based on CS 15-213 at Carnegie Mellon University and CSE333 at the University 

of Washington. Simple definitions might be from Wikipedia. 


