
Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 1 of 48

Lecture Summary

Table of Contents
1 Introduction.. 2

2 Introduction to C .. 2

3 Representing C Integers ... 4

4 Pointers ... 5

5 Dynamic Memory Allocation ... 7

6 C Wrap-Up ... 8

7 Basic x86 Architecture ... 10

8 Compiling C Control Flow... 12

9 Compiling C Data Structures ... 16

10 Code Vulnerabilities .. 18

11 Memory Allocation ... 18

12 Linking .. 24

13 Floating Point .. 27

14 Optimizing Compilers ... 29

15 Architecture and Optimization .. 30

16 Caches ... 32

17 Exceptions .. 34

18 Virtual Memory .. 36

19 Multiprocessing ... 40

20 Devices ... 44

Info
There is no claim for completeness. All warranties are disclaimed.

Creative Commons Attribution-Noncommercial 3.0 Unported license.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/2.5/ch/

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 2 of 48

Study Part
Disclaimer: I have already attended course 252-0062-00L “Operating Systems and Networks” by

Prof. Hoefler and Prof. Perrig. Due to that some elements in this summary might not be discussed

extensively. See also: http://studysheets.ch/sheets/operating-systems/download.

Since writing code is rather tedious in Microsoft Word and I am really in favor of saving paper, the

following variable declarations may be assumed:1

1 Introduction2

Five important realities to always keep in mind:

1. ints are not integers – floats are not real numbers. E.g. 𝑖2 ≥ 0 only holds for floats, not neces-

sarily for ints. While computer arithmetic doesn’t generate random values not all “usual”

mathematical properties may be assumed. Integer operations stratify properties of rings,

floating point operations satisfy ordering properties.

2. You’ve got to know assembly. It is the key to understanding the machine-level execution

model.

3. Memory matters – RAM is an unrealistic abstraction. Memory is not unbounded, is the source

of pernicious bugs, and memory performance is not uniform.

4. There’s much more to performance than asymptotic complexity. Not only do constant factors

but you also have to understand the system to optimize performance.

5. Computers don’t just execute programs. I/O is critical to reliability and performance. Addi-

tionally there’s network communication which is the source for many system-level issues.

2 Introduction to C

Contrary to languages such as C# or Eiffel, C is very fast, is close to the metal, and uses a powerful

macro pre-processor (cpp). The cpp performs string and file substitution and conditional com-

pilation. It is the choice for OS developers, embedded systems, speed fanatics, and authors of se-

curity exploits. On the other hand, C lacks OOP features, a lot of built-in types, and exceptions.

Furthermore it doesn’t have automatic memory management but it has pointers which offer di-

rect access to memory addresses. A return value of 0 indicates everything went okay.

Workflow GNU gcc toolchain

1 By personal preference, I use Source Code Pro as monospace font. In the final PDF the fonts are (or at least
should be) embedded. If you have problems viewing this file, please install the font by downloading it for
free from Adobe on GitHub: github.com/adobe-fonts/source-code-pro
2 The heading numbers [of level 2] correspond to the chapter/lecture numbers by Prof. Roscoe and the sub-
headings correspond to the different topics outlined in each lecture. Exception: Chapter 1

http://studysheets.ch/sheets/operating-systems/download
https://github.com/adobe-fonts/source-code-pro

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 3 of 48

Control flow in C

Just like C# etc. C has if/else, switch, return,

for, while, do/while, break, continue,

statements. While is highly controver-

sial, it does have a purpose in e.g. OS code

where cleanup needs to be done, e.g. a func-

tion has to perform an operation and needs

to do three things before it can do its main

purpose. If any of these three “things” fail,

they need to be cleaned up. To do so, their

cleanups are written in reverse order after

the main part and s are used to jump there. C relies on the main() function, it starts off the

whole program.

Basic types in C

Declarations within a block are local to that block whereas

declarations outside of a block are declared in the entire pro-

gram. Static inside a block persists between calls, outside

blocks it is limited to the file.

Integers are signed by default; “signed” and “unsigned” can

be used to clarify. Types have different sizes on different ar-

chitectures, the right-hand table lists the sizes for Intel x86-

64. Rules for arithmetic on integers and floats are complex

since they involve implicit and explicit (casts) conversions.

Booleans are just integers (0:: and non-0::) and the “ ” operator turns anything non-

zero into 0 and vice-versa. Support for a new type was added in C99 yet is completely op-

tional. Statements in C are also an expression can be useful for e.g. file-exists calls.

 is a type and doesn’t have a value. It is used as an untyped pointer to [raw] memory and for

functions with no return value (aka procedures).

Operators

C supports a wide array of operators including shifts, the ternary if-else operator, bitwise opera-

tor, and (arithmetic) assignment operators. Additionally, the following are considered operators

for operating on pointers: *, &, (type), sizeof. In- and decrements come in pre and post flavor and

differ in what value the variable being incremented has when accessing it. This works for scalar

types and pointers. Casting is available for most types.

Arrays in C

An array is a finite vector of variables which are all of the same type and indices are zero-based.

The compiler does not perform bound checking. To initialize an array, different methods are avail-

able.

C data type Intel x86-64

char 1
short 2
int 4
long 8
long long 8
float 4
double 8
long double 10/16

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 4 of 48

Strings are an array of chars in C, terminated with null `\0`. Henceforth,

 is equivalent to . Yet C does provide a lot

of library functions to operate on strings.

3 Representing C Integers

Bit-wise operators treat arguments as bit vectors while logic operators always return 0 or 1

(while treating 0 as false, and anything else as true) and may terminate early. To avoid null pointer

access, the following trick can be used: . The bitwise operators have the following mean-

ings as vector operations: “&”→ intersection, “|”→ union, “^”→ symmetric difference, “~”→ com-

plement. Shift operations the following properties:

Left shift: x << y Right shift: x >> y Undefined behavior

 Shift bit-vector x
left y positions

 Throw away extra
bits on the left

 Fill with 0s on the
right

 Shift bit-vector x right y positions
 Throw away extra bits on the

right
 Logical shift: fill with 0s on the

left
 Arithmetic shift: replicate MSB

on the right

 Shift amount < 0

 Sift amount ≥ word size

Integer ranges

 Unsigned Two’s complement

Conversion
𝐵2𝑈(𝑥) =∑ 𝑥𝑖 ⋅ 2

𝑖
𝑤−𝑖

𝑖=0

𝐵2𝑇(𝑋)

= −𝑥𝑤−1 ⋅ 2
𝑤−1 +∑ 𝑥𝑖 ⋅ 2

𝑖
𝑤−2

𝑖=0

𝑴𝒊𝒏
𝒘 = 𝟏𝟔

UMin = 0 = 000…0 TMin = −2𝑤−1 = 100…0
−32768 = 0x8000

𝑴𝒂𝒙
𝒘 = 𝟏𝟔

UMax = 2𝑤 − 1 = 111…1
65535 = 0xFFFF

TMax = 2𝑤−1 − 1 = 011…1
32767 = 0x7FFF

-1 N/A 0xFFFF
0 0x0000

Observations |TMin| = TMax + 1, UMax = 2 ⋅ TMax + 1;
2’s complement: ~𝑥 + 1 = −𝑥; ~𝑥 + 𝑥 = 111…1 = −1

Constants in C are considered to be singed integers. Casting between signed and unsigned is pos-

sible using “(int)” and “(unsigned)”, respectively. Casting can also happen implicitly. When mixing

signed and unsigned numbers in an expression, however, singed values are implicitly cast to un-

signed. Sign extension works by copying the MSB. C automatically performs sign extension for

signed values.

Integer addition and subtraction in C

𝑠 = 𝑈𝐴𝑑𝑑𝑤(𝑢, 𝑣,) = 𝑢 + 𝑣 mod 2
𝑤 = {

𝑢 + 𝑣, 𝑢 + 𝑣 < 2𝑤

𝑢 + 𝑣 − 2𝑤 , 𝑢 + 𝑣 ≥ 2𝑤

The standard unsigned addition function ignores the carry output (a 𝑤 bit operand would result

in a 𝑤 + 1 bit number) and thus implements modular arithmetic; it wraps around when the true

sum is ≥ 2𝑤 . This operation forms an Abelian group: it is closed under addition, commutative,

associative, 0 is the additive identity, and each element has an additive inverse.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 5 of 48

𝑇𝐴𝑑𝑑𝑤(𝑢, 𝑣) =

{

𝑢 + 𝑣 + 2𝑤 , 𝑢 + 𝑣 < 𝑇𝑀𝑖𝑛𝑤⏞
negative overflow

𝑢 + 𝑣, 𝑇𝑀𝑖𝑛𝑤 ≤ 𝑢 + 𝑣 ≤ 𝑇𝑀𝑎𝑥𝑤
𝑢 + 𝑣 − 2𝑤 , 𝑇𝑀𝑎𝑥 < 𝑢 + 𝑣⏟

positive overflow

Unsigned and signed addition have the same bit-level behavior in C. Performing two’s comple-

ment addition also requires 𝑤 + 1 bits, and it then drops off the MSB and treats the remaining

bits as a two’s complement integer. When rapping around it behaves as follows: if the sum is ≥

2𝑤−1 it becomes negative (at most once) and if the sum is < −2𝑤−1 it becomes positive (at most

once). Addition in 2’s complement forms a group. The group is isomorphic to unsigneds in un-

signed addition.

Integer multiplication in C

 Unsigned (up to 𝟐𝒘
bits)

2’s complement min (up
to 𝟐𝒘−𝟏 bits)

2’s complement max (up to 𝟐𝒘
bits, but only for (𝑻𝑴𝒊𝒏𝒘)

𝟐)

Range 0 ≤ 𝑥 ⋅ 𝑦
≤ (2𝑤 − 1) ⋅ 2
= 22𝑤 − 2𝑤+1 +

𝑥 ⋅ 𝑦
≥ (−2𝑤−1) ⋅ (2−𝑤−1 − 1)

= −22𝑤−2 + 2𝑤−1

𝑥 ⋅ 𝑦 ≤ (2𝑤−1)2 = 22𝑤−2

Unsigned multiplication produces a 2𝑤 bit results but discards 𝑤 bits and thus implement mod-

ular arithmetic. Together with unsinged addition if forms a commutative ring: addition is a com-

mutative group, it is close under multiplication, it is commutative and associative, 1 is the multi-

plicative identity, and multiplication distributes over addition.

Signed multiplication produces a 2𝑤 bit results but discards 𝑤 bits. It is again isomorphic to un-

signed multiplication and addition and both of them are isomorphic to ring of integersmod 2𝑤 .

Integer multiplication and division using shifts

𝑢 ≪ 𝑘 is equivalent to 𝑢 ⋅ 2𝑘 , in both signed and unsigned representations. 𝑢 ≫ 𝑘is the same as

⌊𝑢/2𝑘⌋ and uses a logical shift for unsinged numbers and an arithmetic shift for signed numbers

(in that case, it also rounds in the wrong direction when 𝑢 < 0. To get a correct quotient of a neg-

ative number, the following can be used ⌊(𝑥 + 2𝑘 − 1)/2𝑘⌋ ⇔ (𝑐 + (1 ≪ 𝑘) − 1) ≫ 𝑘.

4 Pointers

The stack

To support recursion, code must be reen-

trant meaning there are multiple simulta-

neous instantiations of a single procedure.

And the stack is where all arguments, local

variables, and return pointers are saved for

the time between when a routine is called

and when it returns. To ensure stack disci-

pline, the callee returns before the caller

does. The stack is allocated in frames. The

stack grows downwards.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 6 of 48

Pointers in C

 produces the virtual address where the value of

is stored.3 A pointer is a variable which contains a

memory address and points to somewhere in the

process’ virtual address space. Dereferencing a

pointer is access the memory referred to by a pointer.

NULL is a guaranteed-to-be-invalid memory location

and its type is . Ayn attempt to

dereference a null pointer leads to a segmentation

fault.

As a security feature, the address space is randomized. Linux randomizes the base of the stack

and the locations of the shared libraries. This makes debugging more challenging.

Box-and-arrow diagrams

Omitted.

Pointer arithmetic

You can perform arithmetic operations on pointers. These operations respect the size of

(; is evaluated at compile time). E.g. increasing a increases

the address by one byte while increasing an increases the address by four bytes.

Arrays and pointers

An array name is an expression and is treated as a pointer to the first element of the array4unless

(1) the array’s address is taken with a , (2) the array is a string literal initializer, or (3) the array

is an operand of .An array name as a function parameter is a pointer.5 Arrays can’t be

renamed (compile-time error) but when referring to them as a pointer, it’s possible.

Passing by reference

By default, C passes arguments by value thus giving the callee a copy of the value. This implies the

callee cannot modify the caller’s copy. When passing by reference, the callee still receives a copy

of the argument, but now it is pointer of which the value points to the variable in the scope of the

caller thus allowing the callee to modify the variable in the scope of the caller.

 Strings are arrays of characters terminated by

null bytes

 Assignment is an expression, not a statement

 Non-zero values evaluate to true, zero evalu-

ates to false

 Post-increment operators bind more tightly

than pointer dereference

 A semicolon is statement terminator, not a sep-

arator

3
4 The compiler rewrites always to
5 This is how functions are converted to pointers.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 7 of 48

Declaration Meaning

 is a pointer to
 is an of pointer to
 is an of pointer to
 is a pointer to a pointer to an
 is a pointer to an of
 is a function returning a pointer to
 is a pointer to a function returning
 is a function returning to an of pointers to functions

returning
 is an array[3] of pointers to functions returning pointers to

of s

5 Dynamic Memory Allocation

A global variable is statically allocated when the program is loaded and deallocated when it exits.

Variables within functions are automatically allocated when the function is called and deallo-

cated when the function returns. When there is a need for more memory which persist across

multiple calls, is too big for the stack, or the required size isn’t known to the caller, dynamically

allocated memory is used. The program explicitly requests a new block of memory which persists

until the code explicitly deallocates it.6

The C memory API

 allocates a block of memory of the given size and

returns a pointer to the first by of that memory (and NULL

if the memory cannot be allocated). The memory should be

assumed to contain garbage. To calculate the size needed, is typically used.

behaves similarly except it takes to parameters and then multiplies them and it zeroes the

memory out, making it a bit slower but also more readable and less error-prone.

Deallocation is done using which releases the memory at

the pointer. To do so, it has the point to the first byte of the allo-

cated memory and it is a good practice to NULL the pointer after

freeing the memory.

While allocations have a fixed size, memory can be reallocated to change the size of the block

using . This operation most likely will copy the data to a new location and thus the new

address returned has to be used.

 is an unsigned integer of some size and is also the return type of . It is large

enough to hold the size of the largest possible array in memory which makes it a suitable type to

be used to store a pointer. is also an unsigned integer and is the result of subtracting

two pointers. It is used for array loops, size calculations etc.

Managing the heap

The heap (“free store”) is a large pool of unused memory which is used for dynamically allocated

data structures. To keep track of that memory, maintains bookkeeping data of allo-

cated blocks in the heap. Memory leaks happen when code doesn’t deallocate memory which is

no longer used. As an implication, the memory footprint of that program will keep growing which

6 Or it is collected by the garbage collector, a feature lacking in C.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 8 of 48

is often really bad. Note: garbage-collected languages are not memory-leak-prone, they’re just

much less likely.

Structures and unions

A is a C type which contains a set of fields and

is comparable to class but it lacks methods and con-

structors. Instances can be allocated on the stack or

on the heap. To refer to fields, a “ ” Is used and “ ”7

refers to field through a pointer to a . When

copying by assignment, the entire contents are cop-

ied which is for example what happens when using

them as arguments for a function (to pass by refer-

ence, a pointer to it is passed). Of course, you can also

return a .

Unions are like s and are also accessed as such, but they only hold one of a set of alternative

values (but they do not check which value is correct).

Type definitions

A introduces a new definition or rather a new name for a type. They can be used to build

up declarations in an easily understandable fashion.

Dynamic data structures

Omitted.8

Generic data structures

Omitted.9

6 C Wrap-Up

The C preprocessor

As aforementioned, C has a powerful preprocessor. One usage is to

include header files inline in the source code which is essentially a

basic mechanism for defining APIs. Double-quotes are for local head-

ers, greater/smaller-than signs are used for system headers. The cpp

also supports macro definitions which work as a token-based

7 Which () is shorthand for
8 For an example on how to implement a singly-linked list, please see slides 35 – 40.
9 For an example on how to implement a generic linked list, please see slides 42 – 44.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 9 of 48

macro substitution. Furthermore, there is also support for conditionals. Since semicolons are a

null statement in C, it has to be “swallowed” in macro definitions which is done by using back-

slashes.

Modularity

A function declaration says something exists somewhere (“prototype”) while a function defini-

tion says what it is (“code”). C deals with compilation units which consist of a C file plus every-

thing it includes. Declaration can be annotated with (definition is somewhere else, either

in this compilation unit or another) or (definition (also) is in this compilation unit,

and can't be seen outside it). The same also applies to global variables which are also declared. A

module is a self-contained piece of a larger program. It consist of externally visible (aka interface)

parts (functions to be invoked, s, global variables, cpp macros) and internal parts (internal

function, types, global variables). A C header file is

used to specify interfaces. Clients include the

header file () which contains to definitions

but only external declarations. The implementa-

tion is typically in (which also includes

) and doesn’t contain any external declara-

tions but only definitions and internal declarations.

Function pointers

In this code: , is a pointer to a function which takes two argu-

ments, a pointer to and a , and returns an . This can be used with s, just like

any type, and is the basis for lots of techniques in systems code.

Assertions

Assertions are evaluated at runtime and if it evaluates to

true, nothing happens, otherwise it prints an error message and the program aborts (core dump).

When compiling with , assertions are removed. Assertions are macros and shouldn’t con-

tain side-effects. They are for programmers to find bugs, not for programs to detect errors.

The construct is almost never a good idea, even though some argue on performance grounds.

It can, however, be used for early termination of multiple loops and to cleanup nested code. It is

used for recovery code where the code performs a sequence of operations and any one can fail

and if it fails, all previous operations must be undone. A typical example is ing a sequence

of buffers for data.10

 and

 saves the current stack state in and re-

turns 0. causes another return to the

point saved by env. The new , returns (or 1 if is 0). This can only be done once for

each . It is invalid if the function containing the returns.

Coroutines

An example where coroutines can be used, is a decompression algorithm with a decompressor

(which runs until it has a character limit) and a parser (which continues where it previously left

10 This code is often auto-generated.

cpp boilerplate ensures file contents only

appear once; never a .c file

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 10 of 48

off, processes new characters and runs until it needs a new one, and then calls back to the decom-

pressor).

7 Basic x86 Architecture

What is an instruction set architecture?

An architecture (also ISA) describes the parts of a processor design

which is relevant to writing assembly code, such as instruct set specifica-

tion, registers. A microarchitecture is an implementation of said archi-

tecture (cache sizes, frequency).

CISC stands for Complex Instruction Set Computer. It is stack-

oriented; the stack is used to pass arguments (which saves the program

counter), providing explicit push and pop instructions. Arithemetic

instructions can access memory and conidition codes are used as a side

effect of artihemtic and logic instructions. The philosophy is to add

instructions to perform typical programming tasks. x86 ist CISC.

RISC stands for Reduced Instruction Set Computer. The instructions are

fewer and simpler which might result in more instructions yet they can be executed on small and

fast hardware. The instruction set is register-oriented which are quite numerous and are used

for arguments, return pointers, and temproatries. Only load and store isntructions can access

memory and there are no condition codes (test instrunctions return 0/1 in a register). MIPS is

RISC and is motivated by “simpler is faster”

While there is still an ongoing debate between CISC (easy for compiler, fewer code bytes) and RISC

(better for compiler optimization, make it run fast with simple chip design), currently RISC is still

a sensible choice for embedded processors while the ISA choice is not a technical issue on desktop

processors.

A bit of x86 history

Omitted.11

Basics of machine code

The state visible to the

programmer consists

of the program coun-

ter (PC) which con-

tains the address of

the next instruction

(called RIP on x86-

64), the register file

(which contains heavily used program data), and the condition codes

which store status information about the most recent arithmetic operation

11 This chapter mentions however, this course uses x86-64 and AT&T Assembly syntax.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 11 of 48

(which is used for conditional branching). The memory is byte-addressable and contains code,

used data, some OS data and also includes the stack which is used to support procedures.

There are two data types in assembly: integers (1, 2, 4, 8 bytes; data values or addresses) and

floating point data (4, 8, 10 bytes). As for code operations there are three categories: arithmetic

functions on register or memory data, data transfer between memory and register, and transfer

control (conditional and unconditional branches/jumps).

The assembler translates the .s (assembly instructions generated by the compiler) file into .o (ob-

ject code) which contains binary encodings of each instruction and is, save for the linkages, the

executable code. The linkages resolved by the linker.

x86 Architecture

To move data, the instruction is

used whereas x is one of { }12. The operands,

 and , can be any one of the following:

- Immediate: constant integer data (prefixed

with), encoded as 1, 2, 4, 8 bytes; e.g.

- Register: one of 16 integer registers; note some

registers reserved or have special uses for par-

ticular instructions; e.g.

- Memory: 1, 2, 4,8 consecutive bytes at address

given by register; e.g.

There are two simple memory addressing modes:

- Normal: (R) → Mem[Reg[R]] where the regis-

ter specifies a memory address; e.g.

- Displacement: D(R) → Mem[Reg[R] + D]

where the register specifies the start of a memory region and the constant displacement

specifies the offset; e.g.

The most general form, however, is:

D(Rb, Ri, S) → Mem[Reg[Rb] + S ⋅ Reg[Ri] + D]

With the following special cases:

(Rb, Ri) → Mem[Reg[Rb] + Reg[Ri]]

D(Rb, Ri) → Mem[Reg[Rb] + Reg[Ri] + D]
(Rb, Ri, S) → Mem[Reg[Rb] + S ⋅ Reg[Ri]]

- D: constant displacement of 1, 2, 4 bytes

- Rb: base register: any of 16 integer regis-

ters

- Ri: index register: any except for

- S: scale: 1, 2, 4, 8

12 See table on the right.

Register Purpose

%rax Accumulate
%rbx Base
%rcx Counter
%rdx Data
%rsi Source index
%rdi Destination index
%rsp Stack pointer
%rbp Base pointer
%rip Instruction pointer
%r8 … %r15
%rsr Status (flags)

Abbr. Meaning Bytes

q Quad word 8
l Long word 4
w Word 2
b Byte 1

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 12 of 48

This address computation combined with the instruction can also be (ab-)used to

compute addresses without a memory reference and to compute arithmetic expressions of the

form 𝑥 + 𝑘 ⋅ 𝑦, 𝑘 ∈ {1,2,4,8}.

x86 integer arithmetic

Condition codes

The condition codes are implicitly set (as a “side effect”) by

the arithmetic operations (but not by). Or they are set

explcitiyl by compare instructions () or by

test instructions () (which is very useful

together with bitmasks).

The family of instructions sets a single byte based on combinations of condition codes. The

 instructions jump to different parts of the code depending on condition codes.

8 Compiling C Control Flow

 statements

13 “load effective address”
14 is like computing 𝑎 − 𝑏 without setting the destination
15 is like computing without setting the destination

Single bit registers

- Carry Flag (for unsigned)

- Sign Flag (for signed)

- Zero Flag

- Overflow Flag (for signed)

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 13 of 48

An statement con-

sists of a test, and one (two)

 branch (and one branch).

The test is an expression returning

an integer whereas anything other

than 0 is interpreted as and 0

is interpreted as . Further-

more, any conditional expression

can be translated into a version. This version, which has separate regions for the

and expressions (and executes the appropriate one), is the typical translation of a conditional

expression into assembly.

Another way to translate a

conditional into assembly is

by using a conditional

move. This makes use of the

 instruction

which moves a value from

 to if the condition C

holds. This has the advantage

of being more efficient than

conditional branching (simpler control flow) but it introduces overhead since both branches are

evaluated. Consequently this approach cannot be used if the or expressions have side

effects or when they are too expensive.

 loops

A loop uses a

backward branch to con-

tinue looping. The branch

is only taken when the

 condition holds. As

an implication, the loop

body is already executed

before the first check is

performed (no matter whether that

check returns or). For

assmebly translation, the goto-version-

method is used again since this allows

producing very hardware-like code in C.

 loops

Converting a loop into a version is very similar to the loop’s translation save

for an extra test before the loop is entered.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 14 of 48

There is, however, a new method to perform this translation where the first iteration jumps over

the body computation within the loop. This avoids duplicating the code to check the test/condition

and unconditional incur no performance penalty. loops are compiled similarly. The rea-

son for these new “jump-to-middle” loop translations is based on the fact of new(er) processors

having almost no overhead when branching unconditionally.

 loops

Last but not least, loops are compiled by combining all of the preceding techniques. First, the

 loop is converted into an

loop, which is then translated into a version OR a jump-to-middle intermediary, and

eventually into a version.

Compact statements

A compact statement is a switch where there are e.g. s for a range of numbers plus a

case, optionally with multiple labels, missing s, and fall through s. This

code block will be converted into a jump table, most likely with s re-arranged to prevent rep-

etitions of the same code (DRY16).

Jumps in assembly are either direct where the jump target is denoted by a label (e.g.) or indi-

rect, e.g. , where the target is loaded from the effective address.

Sparse statements

A sparse statement is impractical to be translated into a jump table and the obvious

 doesn’t benefit from compiler magic. Such a sparse can be translated into a bi-

nary tree which has logarithmic performance.

16 “Don’t repeat yourself”

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 15 of 48

Procedure call and return

The stack is a part of the memory which is managed with

stack discipline thus making it a bit different from “normal”

memory. The stack grows toward lower address. It is used

to save registers when calling procedures, store return val-

ues, and pass arguments (if there are more than 6 argu-

ments).

To read and write from and to the stack, push and pop op-

erations are used. These operations increment (pop) or dec-

rement (push) the stack pointer by a number of bytes (using

the same syntax like the move instruction) and read

from/write to the only argument supplied to the instruc-

tion.

A procedure in Assembly is

called using . This

pushes the return address onto the stack and jumps to

. To return simply is called which pops the address

from the stack and jumps to that address.

A full stack frame contains (in top-to-bottom order) the argument build, locale variables (if not in

registers), the saved register context, and the old frame pointer – all in the current stack frame.

And the caller stack frame contains the return address and arguments for this call. It is pushed by

the instruction.

x86_64 calling conventions

Say procedure contains a call to procedure . This makes foo the caller of ,

which is the callee. To ensure data integrity, there are “caller save” (caller saves temporary in its

frame before calling) and “callee save”17 (callee saves temporary in its frame before using) regis-

ters.

A few interesting features of the stack frame:

- An entire frame is allocated at once: everything can be accessed relative to the stack pointer

. The allocation can be delayed by temporarily using the red zone18.

- Deallocation is simple: the stack pointer is incremented; no need for base/frame pointer.

Slides 65 f. omitted due to non-comprehension of the writer of this document. Any input is appreci-

ated!

17 “save”, not “safe”!
18 “In computing, a red zone is a fixed-size area in a function's stack frame beyond the return address which
is not preserved by that function. The callee function may use the red zone for storing local variables with-
out the extra overhead of modifying the stack pointer. This region of memory is not to be modified by inter-
rupt/exception/signal handlers. The x86-64 ABI used by System V mandates a 128-byte red zone, which
begins directly after the return address and includes the function's arguments.” (Wikipedia)

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 16 of 48

9 Compiling C Data Structures

One-dimensional array

Before we can have a look at how one-di-

mensional arrays are compiled, we need to

have a recap the different amounts of bytes

required for each numerical datatype. In-

tegral types are stored and operated on in

general integer registers and whether they

are treated as signed or unsigned depends

on the instructions used. Floating points

numbers are stored and operated on in

floating point registers.

To allocate an array defined as

 of datatype and length , a

contiguous region in memory of

size bytes is allo-

cated. As an example, an array

 needs 12 bytes whereas

 requires 24 bytes on

x86-64.

Arrays in C-Assembly combination

can also be used as pointers or ra-

ther elements of arrays can be accessed using pointer arithmetic. Note however, no bound check-

ing is performed, out-of-range behavior is implementation-dependent, and different arrays may

not be allocated in the same relative order. When accessing an array in Assembly, a common strat-

egy is to have the starting address in one array and the index in another array, and then use a

memory reference with the scale factor set to the size of an array element.

Nested arrays

A definition like is an array of , contiguously allo-

cated elements whereas each element is an array of elements

of type , also allocated contiguously. Every element of re-

quires bytes resulting in a total array size of bytes. This

row-major ordering of all elements is guaranteed. The starting

address of a row is given by and its type (of) is simply an array of elements of

type . Accessing an element of a nested array in Assembly is similar to one-dimensional arrays,

except for an additional row offset multiplication. Pointer arithmetic allows “strange” arrays indi-

ces such as to be used and produce a valid and expected result.

Multi-level arrays

Multi-level arrays (also jagged arrays or arrays of arrays) are, as the name implies, an array of

arrays. This means, the “first level” of arrays are pointers which point to arrays of some type .

This adds a level of indirection and thus requires to memory reads one to get to pointer to the row

arrays and the other one to access the element within the arrays.

 Intel GAS Bytes C

In
te

g
ra

l
F

lo
a

t

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 17 of 48

 Nested arrays Multi-level array

Strengths - The C compiler handles doubly
subscripted arrays

- Very efficient code is generated
- The multiply in index computation

is avoided

- Can create a matrix of any size

Limitations - Only works for fixed size arrays - Index computation has to be done
explicitly when programming

- Accessing a single element is costly
- Involves multiplication

ures

Structures are contiguously allocated regions of memory with members, which are references by

names, of possibly different types. The offset of each structure member is determined at compile

time (see next section) and thus also the pointer to each element.

Alignment

General rule: if a primitive data type requires 𝑲 bytes, the address must be a multiple of 𝑲 (this

varies by architecture and OS)19. This allows memory to be access by aligned chunks of 4 or 8

bytes, also because it is inefficient to load/store datum20 which spans quad word boundaries.21

The compiler inserts gaps in a structure to ensure correct alignment of fields.

These alignment rules have to be satisfied within a structure but also overall; each structure has

an alignment requirement (initial address and the length of the structure have to be multiples

of) where is the alignment of its largest element. As a consequence, space can be saved by e.g.

putting large datatypes first in the structure’s definition.

19 This implies for a datatype of size 2𝑛 to be aligned with the lowest 𝑛 bits of the address to be . In the case
this holds for (1 byte), (2 bytes), and (4 bytes), and double and * (8 bytes),
but not for on Linux (16 bytes, yet aligned to 8-byte boundary).
20 “datum” is the singular of “data”
21 Virtual memory is very tricky when a datum spans 2 pages.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 18 of 48

Arrays of ures

In an array of structures, alignment requirements have to be satisfied for every element.

Unions

Unions are allocated according to the largest element and only one field

can be used at a time.

10 Code Vulnerabilities

Worms and Viruses

A worm is a program which can run by itself and can propagate a fully working version of itself

to other computers. This in stark contrast to a virus which adds itself to other programs and can-

not run independently.

Stack overflow bugs

Consider the Unix implementation of . It

completely lacks any limit on the number of

characters to be read, just like similar functions

like or the family with . This

weakness combined with a too small buffer can

lead to a stack overflow (manifested in a segmen-

tation fault). While a crash is simply annoying,

this strategy can also be exploited to overwrite

the return address of a function to an address within the buffer and thus making the program

jump to the exploit code.

Stopping overrun bugs

Exploits such as the above can be prevented by using library routines which limit string lengths

(instead of , instead of). Additonally, there are now system-level protec-

tions in place which e.g. randomize stack offsets which makes address prediction harder. There

are also non-executable code segments.

XDR

Omitted.

11 Memory Allocation

“Sizes of needed data structures may only be known at runtime.”

Successful: returns a pointer to a memory block of at least
size bytes (typically) aligned to 8- or 16-byte boundary. If

, returns
Unsuccessful: returns and sets

Returns the block pointed at by p to pool of available
memory. must come from a previous call to or

Changes size of block and returns pointer to new block.
Contents of new block unchanged up to min of old and

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 19 of 48

new size. Old block has been 'd (logically, if)

The problem

Assume: memory is word addressed and each word can hold a pointer, which in x86-64 is 64 bits.

A program can issue an arbitrary sequence of and

 (only to previously ’d blocks) requests. An

allocator has no control over the number or size of the al-

located blocks yet has to respond immediately to

(no reordering/buffering possible) while also aligning the

blocks correctly. Of course, only free memory can be ma-

nipulated and blocks can’t be moved once ’d (no

compaction possible).

One performance goal is throughput i.e. for a given se-

quence of and requests to maximize through-

put and maximize peak memory utilization, which are of-

ten conflicting. The throughput is the number of completed

requests per unit of time.

The other performance goal, peak memory utilization re-

quires some level of formalism:

- Given some sequence 𝑅𝑖 , 𝑖 ∈ [0, 𝑛 − 1] of and requests.

- The aggregate payload 𝑃𝑘 is defined as: results in a block with a payload of bytes.

After request 𝑅𝑘 has completed, the aggregate payload 𝑃𝑘 is the sum of currently allocated

payloads i.e. all ’d stuff minus all ’d stuff.

- The current heap size 𝐻𝑘 : assume 𝐻𝑘 is monotonically non-decreasing (it grows when the

allocator uses).

- The peak memory utilization after 𝒌 requests: 𝑈𝑘 = max
𝑗<𝑘

𝑃𝑗 /𝐻𝑘

One cause for poor memory utilization is fragmentation which can either be internal or exter-

nal.

For a given block, internal fragments occurs if the payload is smaller than the block size. This is

caused by the overhead of maintain heap data structure, padding for alignment purposes, or ex-

plicit policy decisions. Therefore this kind of fragmentation depends only on the pattern of previ-

ous requests which makes it easy to measure.

External fragmentation on the other hand depends on the pattern of future requests which makes

it difficult to measure. It occurs when there is enough aggregate heap memory but no single free

block is large enough.

To know how much to free, the standard method is to keep the length of a block in the word pre-

ceding the block (called header field or just header). This, obviously, requires an extra word for

every allocated block. To keep track of free lists, the following methods can be used:

Method 1: Implicit list using length – links all blocks

Method 2: Explicit list among the free blocks using pointers

Method 3: Segregated free list (different free lists for different size classes)

Implementation Issues

- How to know how much

memory is being ’d

when it is given only a pointer

(and no length)?

- How to keep track of the free

blocks?

- What to do with extra space

when allocating a block that

is smaller than the free block

it is placed in?

- How to pick a block to use for

allocation – many might fit?

- How to reinsert a freed block

into the heap?

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 20 of 48

Method 4: Blocks sorted by size (this can use a balanced tree (e.g. red-black) with pointers

within each free block and the length used as a key)

Implicit free lists

For an implicit free list to work, to pieces of infor-

mation per block need to be stored: its length and

whether it’s allocated. To save one word and only use

a single word to store this information, the following

trick is used: if the blocks are aligned, some low-order

address bits are always 0, making it perfect to be used

as an allocated/free flag; it only has to be masked out

when reading the word.22

For exercise purposes, the following encoding is often

used: . The end of the list is marked by .

S
tr

a
te

g
ie

s
to

 f
in

d
 a

fr

e
e

 b
lo

ck

First fit Next fit Best fit23

Search the list from the be-
ginning and choose the
first block which fits.
While it works, it can take
linear time in the amount
of total blocks. It can also
cause splinters at the be-
ginning of the list.

Similar to first fit but the
search is continued where
the previous one left off.
This should be faster than
first-fit since unhelpful
blocks aren’t rescanned yet
fragmentation might be
worse.

The whole list is searched
for the “best” block where
“best” refers to a block
which fits with the fewest
bytes left over. This keeps
fragments small (less frag-
mentation) but is slower
than first fit.

When a free block is found it can either be allocated in full or split. Splitting makes sense when

allocated space is smaller than free space.

To free a block, it suffices to clear the allocated flag yet this could lead to so called “false fragmen-

tation” which results in having free space which isn’t found by the allocator.

Coalescing

Coalescing is the process of joining a block with the next/previous block

given it is free. This is done to have larger free blocks. To perform bidirec-

tional coalescing, boundary tags are used. They replicate the size/allocated

information at the bottom/end of free blocks which allows the list to be trav-

ersed backwards (but requires extra space and leads to internal fragmenta-

tion).

Coalescing is either immediate (after) or deferred (e.g. when the list

is scanned for or at an external fragmentation threshold).

22
23 This is approximated by segregated free lists without having to search the entire free list.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 21 of 48

Explicit free lists

Instead of maintaining a list of all blocks, only free blocks are tracked. And

since the next free block could be anywhere, not only sizes but also forward

and backward pointers need to be stored but since only free blocks are

tracked, the payload area can be used for the pointers. Boundary tags are still

necessary for coalescing.

A newly freed block can be inserted into the list using different policies.

Policy LIFO Address-ordered

 Insert freed block at
the beginning of the
free list

Insert freed blocks so that free list
blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

Pro Simple and constant
time

Requires search

Con Studies suggest frag-
mentation is worse
than address ordered

Studies suggest fragmentation is lower
than LIFO

Segregated free lists

For every size class of blocks there exists a

separate free list. Often small blocks have

one list for each size whereas larger sizes are

grouped by powers of two.

To allocate a block of size 𝑛 the appropriate

free list is searched for a block of size 𝑚 > 𝑛.

If a block is found, the block is split and the fragment is (optionally) placed on the appropriate list.

If no block is found, the next larger class will be tried. If, even after repeating this process, no block

is found, additional heap memory from the OS is requested and allocate a block of 𝑛 bytes in this

new memory, placing the remainder as a single block in the largest size class. When freeing a

block, the memory is coalesced and (optionally) placed on the appropriate list.

Advantages of seglists are higher throughput (logarithmic time for power-of-two classes) and bet-

ter memory utilization because the first-fit search of a segregated list approximated a best-fit

search of the entire heap; in the extreme case where every block has its own size class, it is equiv-

alent to best-fit.

Garbage collection

Garbage collection is the process of automatically (implies: the application doesn’t have to free

the memory by itself) reclaiming heap-allocated storage. While it is not possible to predict the

future i.e. know what is going to be used depends on conditionals, if a block doesn’t have any

pointers to it, it can be assumed it will not be used anymore. This requires certain assumptions

about pointers. First of all, the memory manager needs to be able to distinguish between pointers

and non-pointers. Secondly, all pointers have to point to the start of the block. And lastly, pointers

cannot be hidden (e.g. by coercing them to an).

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 22 of 48

Let the memory be a graph

with each block being node

and each pointer being an

edge. Furthermore loca-

tions in the heap which

contain pointers into the

heap are called root nodes

(e.g. registers, locations on

the stack, global variables). A node is said to be reachable if there is a pat from any root to that

node. Otherwise it’s garbage.

To implement a Mark and Sweep garbage collector you can build on top of the /

package. is called until it runs of out space. When that happens, the extra mark bit in the

head of each block is used in a two-step process.

1. Mark: start at the roots and set mark bit on each reachable block

2. Sweep: scan all blocks and free blocks that are not marked

For a simple implementation, the following is assumed:

- : returns pointer to a

new block with all locations

cleared

- : read location of

block into register

- : write into

location of block

Each block will have a

header word which is ad-

dressed as for

block (different uses in

different collectors).

- : determines

whether is a pointer

- : returns the

length of block , not includ-

ing the header

- : returns all the

roots

Mark using depth-first traversal of the

memory graph

Sweep using lengths to find next block

A conservative implementation of the mark & sweep algorithm in C uses to determine

whether a word is a pointer by checking if it points to an allocated block of memory. However, in

C pointers can point to the middle of a block. To solve this problem (i.e. to find the beginning of a

block) a balanced binary tree is used to keept rack of all allocated blocks (the key is the start-of-

block). Balanced-tree pointers can be stored in the header.

Memory pitfalls

Dereferencing bad point-
ers

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 23 of 48

Reading uninitialized
memory

Overwriting memory

Referencing nonexistent
variables

Freeing blocks multiple
times

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 24 of 48

Referencing freed blocks

Failing to free blocks

Memory leaks

To find memory bugs, conventional debuggers such as can be used or it can be done by debug-

ging (e.g. UTorronto CSRO) which wraps around and performs boundary

checking. There are implementations which contain checking code. Further tools include

binary translators (e.g. valgrind, Purify) and garbage collection (e.g. Boehm-Weiser Conservative

GC).

12 Linking

Programs are translated and linked using a compiler driver. This process is called static linking.

This compiler driver (e.g.) first generates object files () from source files () by using

translators (). These, separately compiled and relocatable, object files are then linked

using a linker () into a fully executable object file. This file contains code and data for all func-

tions defined in the source file.

The advantage of linkers is modularity: instead of writing one huge program, it can be written as

many small source files. It also enables the programmer the use common functions from libraries.

Another advantage is efficiency: it is much faster to re-compile one file after changing it than the

whole program. And by using libraries a lot of space can be saved. This is done by aggregating

common functions into a single file which makes the executables only have code for functions they

actually use (both in file and in memory).

Linkers work in a two-step process:

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 25 of 48

Step 1: Symbol resolution: a program defines and references symbols (variables, func-

tions). These definitions are stored in a symbol table by the compiler. This table is an array

of structs where each entry includes name, type, size, and location. The linker then asso-

ciates each symbol reference with exactly one symbol definition.

Step 2: Relocation: during the relocation phase, separate code and data sections are

merged into a single section. The symbols are relocated form the relative locations in the

 files to their final and absolute memory locations in the executable. This of course re-

quires an update on all symbol references.

Object files

Relocatable object file () Executable object file Shared object file ()

Contains code and data in a
form that can be combined
with other relocatable object
files to form executable object
file. Each .o file is produced
from exactly one source (.c)
file

Contains code and data in a
form that can be copied di-
rectly into memory and then
executed.

Special type of relocatable ob-
ject file that can be loaded into
memory and linked dynami-
cally, at either load time or
run-time.

ELF object file format

ELF header Word size, byte ordering, file type (), machine type etc.
Segment header table Page size, virtual address memory segments (sections), segment sizes

Code
Read only data: jump tables …
Initialized global variables
Uninitialized global variables, “block started by symbol”/”better save
space”, has section header but occupies no space
Symbol table, procedure and static variables names, section names
and locations
Relocation info for section, address of instructions that will
need to be modified in the merged executable
Relocation info for section, addresses of pointer data that will
need to be modified in the merged executable
Info for symbolic debugging ()

Section header table Offsets and sizes for each section

Linker symbols

Global symbols External symbols Local symbols

Symbols defined by module m
that can be referenced by
other modules. E.g.: non-

 C functions and non-
 global variables.

Global symbols that are refer-
enced by module m but de-
fined by some other module.

Symbols that are defined and
referenced exclusively by
module m. E.g.: C functions
and variables defined with the

 attribute. Local linker
symbols are not local pro-
gram variables

Additionally, these symbols are either strong or weak. Strong symbols are procedures and ini-

tialized globals whereas weak symbols are uninitialized globals.

The linker works through the symbols following three rules:

Rule 1: Multiple strong symbols are not allowed. Each item can be defined only once.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 26 of 48

Rule 2: Given a strong symbol and multiple weak symbols, choose the strong symbol. Ref-

erences to the weak symbol resolve to the strong symbol.

Rule 3: If there are multiple weak symbols, pick an arbitrary one.24

Global variables should be avoided if possible. Instead could be used or the global variable

should be initialized. If an external global variable is used, should be used.

Static libraries

To package functions which are commonly used (e.g. math, I/O, memory management, string ma-

nipulation) by programmers, statics libraries (, for archive files) are used ideally. They concat-

enate related relocatable object files into a single file with an index (aka archive). The linker now

also looks in these archives when resolving unresolved external references. Should an archive file

member resolve the reference, it is linked into the executable. When creating25 such an archive,

the archiver allows for incremental updates.

To use static libraries, the linker’s algorithm works as follows:

- Scan and files in the command line order

- During the scan, keep a list of the current unresolved references

- As each new or file, , is encountered, try to resolve each unresolved reference in the

list against the symbols defined in .

One of the problems is the command line order being relevant. This can be “solved” by putting

libraries at the end of the command line.

Shared libraries

Static libraries have a few disadvantages: there is some level of duplication in the stored executa-

bles (e.g. due to) which leads to duplication in the running executables. And since they are

loaded/linked statically, a minor bug fix in a system library requires each application to explicitly

relink. The solution is to use shared libraries (aka dynamic link libraries, DLL,). The object

files containing code and data are linked into the application dynamically, either at load-time or at

run-time.

Using load-time linking the linking happens when the executable is first loaded. This is the com-

mon case for Linux and handled automatically by the dynamic linker (e.g. for libc.so).

When using run-time lining the dynamic linking occurs after the program has begin. This is done

by the interface and is commonly used in high-performance web servers and for runtime

library interpositioning.

Shared library routines can be shared by multiple process (cf. shared pages).

24 This can be overridden with
25

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 27 of 48

13 Floating Point

Representing floating-point numbers

Using fractional binary numbers (∑ 𝑏𝑘 ⋅ 2
𝑘𝑖

𝑘=−𝑗) allows for easy divide and multiply operations

(using shifts) but they can only exactly represent numbers of the form 𝑥/2𝑘 . That’s why a standard

was desperately needed 30 years ago and IEEE 754 was born.

Numerical form Encoding

(−1)𝑠𝑀2𝐸 with sign bit 𝑠, significand (or mantissa) 𝑀
(normally a fractional value ∈ [1.0,2.0)) and exponent
𝐸 which values it by a power of two

The MSB is the sign bit 𝑠, followed by
 which encodes 𝐸, and which

encodes 𝑀.

Types of IEEE floating-point numbers

Different types of IEEE floating point numbers offer different precisions:

Name Total bits

IEEE 754 Single Precision 1 8 23 32
IEEE 754 Double Precision 1 11 52 64
Intel Extended Precision 1 15 63 80
IEEE 754 Quadruple Precision 1 15 112 128

In C there are only two guaranteed levels, and . The type can be any

non-single-precision type. Casting between , , and changes the bit representation.

Converting to truncates the fractional part (“round towards zero”) and is undefined when out

of range/NaN. Converting to is exact provided the has less or equal to 53 bits word

size. Converting to a rounds according to rounding mode.

 Normalized values Denormalized values Special values

Condition
 Exponent is coded as a biased

value:
- E = Exp − Bias
- Exp: unsinged value of exp
- Bias = 2e−1 − 1 where e is

the number of exponent
bits (see table below)

Singified is coded with implied
leading 1: M = 1. xxx…x2
- xxx…x are the bits of frac
- Minimal when 000…0 (M =

1.0)
- Maximal when 111…1

(M = 2.0 − 𝜀)

Exponent value: E =
−Bias + 1 (instead of
E = 0 − Bias)
Significand coded with
implied leading 0, M =
0. xxx …x2
Cases:
- :

value 0 (actually
±0, both exist)

- :
numbers very
close to 0.0, lose
precision as they
get smaller; eq-
uispaced

Cases:
- :

represents ∞ for
overflowing oper-
ations; negative
and positive exist

- :
Not-A-Number
(NaN); for when
no numeric value
can be deter-
mined

Precision Bias Exp range E range

Single 127 1…254 -126…127
Double 1023 1…2046 -1022…1023

Example

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 28 of 48

Floating point comparison is very similar to unsigned integer comparison save for a few details:

Sign bits have to be compared first, +0 and -0 have to be taken into account, and NaNs are prob-

lematic since they are greater than any other value.

Floating-point ranges

This section is about a small example from the slides. The first image is

about the first format, the second two images about the second format

(pictured on the right).

Floating-point rounding

When performing floating point operations which require rounding, the exact result is computed

first, and then it is fit into desired precision (which might overflow if the exponent is too large).

IEEE FP uses round-to-even by default (no statistical bias) which when exactly hallway between

two possible values rounds so that the least significant digit is even.

Creating a floating point number is a three-step process:

1. Normalize to have a leading 1 (left shifts, decrement exponent)

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 29 of 48

2. Round to fit within fraction

Consider the image on the right: if

 and are 1, the value is >

0.5 and rounded up. If and are 1 but is 0, it rounds to even.

3. Postnormalize to deal with effects of rounding (right shifts, increment exponent)

Floating-point addition and multiplication

 Multiplication Addition

Problem statement (−1)𝑠1 𝑀1 2
𝐸1 × (−1)𝑠2 𝑀2 2

𝐸2

= (−1)𝑠 𝑀 2𝐸

(−1)𝑠1 𝑀1 2
𝐸1 + (−1)𝑠2 𝑀2 2

𝐸2

= (−1)𝑠 𝑀 2𝐸
Exact result 𝑠 = 𝑠1^𝑠2

𝑀 = 𝑀1 ⋅ 𝑀2
𝐸 = 𝐸1 + 𝐸2

𝐸 = 𝐸1

Fixing - If 𝑀 ≥ 2, shift 𝑀 right, incre-

ment 𝐸
- If 𝐸 out of range, overflow
- Round 𝑀 to fit precision

- If 𝑀 ≥ 2, shift 𝑀 right, incre-
ment 𝐸

- If 𝑀 < 1 , shift 𝑀 left 𝑘 posi-
tions, decrement 𝐸 by 𝑘

- Overflow if 𝐸 out of range
- Round 𝑀 to fit precision

Monotonicty
(except for ∞, NaN)

𝑎 ≥ 𝑏 ⇒ 𝑎 + 𝑐 ≥ 𝑏 + 𝑐 𝑎 ≥ 𝑏 ∧ 𝑐 ≥ 0 ⇒ 𝑎 ⋅ 𝑐 ≥ 𝑏 ⋅ 𝑐

Floating-point puzzles

Omitted.

SSE floating point

Omitted.

14 Optimizing Compilers

The compiler is your (shy) friend! – Prof. Roscoe

Where compilers are good and where they run into limitations:

Strong suits Pitfalls Limitations

Mapping program to
machine:
- register allocation,

scheduling
- dead code elimina-

tion
- minor inefficien-

cies elimination

Improving asymptotic ef-
ficiency:
- programmer has to se-

lect best overall algo-
rithm

Overcoming optimization
blockers:
- memory aliasing
- procedure side-effects

If in doubt, the compiler is conservative
Fundamental constraints:
- must not change program behavior

under any condition
Behavior obvious to programmer bay be
obfuscated by languages and coding
styles
Analysis is performed only within pro-
cedures and based on static information

Removing unnecessary procedure calls

Procedure calls and bound checking can be expensive and abstract data types can lead to ineffi-

ciencies. If possible and reasonable they should be considered to be removed/inlined. Addition-

ally, watch your innermost loop.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 30 of 48

Code motion and precomputation

Sometimes the same result gets computed over and over again. This frequency may be reduced

by moving code out of a loop (provided the result stays the same). The compiler might do this for

you.

Strength reduction

A costly operation (e.g. multiplication) can be replaced by a simpler one (e.g. shift). The usefulness

of this optimization depends on the machine.

Common subexpressions

Compilers are very bad at exploiting arithmetic properties which e.g. for grid-based coordi-

nate/index calculations (matrix-like e.g. image) are heavily used. In such as a scenario it makes

sense to explicitly define and calculate common subexpressions.

Optimization blocker: procedure calls

When the compiler cannot be absolutely sure a procedure will always produce the same result in

a loop, it will not inline it and thus call it on every loop iteration. Provided the result doesn’t change

(as regarded by the programmer) this procedure call can and should be moved outside of the loop.

Compiler usually treats procedure call as a black box that cannot be analyzed.

Optimization blocker: memory aliasing

Two different memory references can write to the same location which can easily be achieved in

C. This can be solved by replacing scalars in the innermost loop and copying memory variables

which are reused into local variables.

Blocking and unrolling

Omitted, see Unrolling, reassociation, multiple accumulators: the code on page 31 (on page 31)

15 Architecture and Optimization

A (brief) recap of sequential processor design

A (brief) recap of pipelined processor design

Omitted.26

Superscalar processor design

Definition: A superscalar processor can issue and execute multiple instructions in one cycle. The

instructions are retrieved from a sequential instruction stream and are usually scheduled dynam-

ically. Benefit: without programming effort, a superscalar processor can take advantage of the in-

struction level parallelism that most programs have.

Superscalar performance

While some instructions take more than one cycle, they can be pipelined (this is also a major prob-

lem for fast execution: the pipelines have to be kept full). Hard bounds on cycles needed are given

by how many cycle an operation itself takes.

26 See also: http://studysheets.ch/sheets/digitaltechnik/download

http://studysheets.ch/sheets/digitaltechnik/download

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 31 of 48

Micro-ops and dataflow

When executing a program, the instructions bytes are fetch from memory and the hardware dy-

namically guesses branches taken/not taken. Instructions are translated into micro-operations

(for CSIC CPUs) which are basically RISC operations for every primitive step performed in the

instruction. An instructions typically requires 1-3 micro-ops. Register references are converted

into tags as means of abstraction for combining with other operations. The goal is to have each

operation utilize a single functional unit.

Dataflow view of instruction execution: view each write as creating new instance of value, oper-

ations can be performed as soon as operands available, and no need to execute in original se-

quence.

Reassociation

Omitted, see Unrolling, reassociation, multiple accumulators: the code on page 31 (below).

Combining multiple accumulators and unrolling

Omitted, see Unrolling, reassociation, multiple accumulators: the code on page 31 (below).

Branch prediction

The Instruction Control Unit must work well ahead of Execution Unit to generate enough oper-

ations to keep the EU busy. When the ICU encounters conditional branch, it cannot reliably deter-

mine where to continue fetching. A solutions is to guess the branch and begin executing instruc-

tions at predicted position but not to actually modify any register or memory data. The resulting

branch misprediction penalty is a cost of multiple cycles on a modern processor and can limit

performance a lot.

Unrolling, reassociation, multiple accumulators: the code

Description Code

Original code

Loop unrolling

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 32 of 48

Loop unrolling with reassociation

Loop unrolling with separate accu-
mulators

16 Caches

Definition: Computer memory with short access time used for the storage of frequently or re-

cently used instructions or data.

Hits and misses

Say you want to retrieve data in block b. If said block is in the cache, it is called a hit, and a miss

otherwise. When a miss occurs, block b is fetched from memory and stored in cache according to

placement (where) and replacement (victim of eviction) policies. There are some metrics

which can be used to measure cache performance:

- Miss rate27: the fraction of memory references not found in cache; typically 3%-10% for L1,

<1% for L2

(misses/accesses) = 1 − hit rate

- Hit time: the time to deliver a line in the cache to the processor (incl. time to determine

whether line is in the cache); typically 1-2 cycles for L1, 5-20 for L2

27 Reason why miss and not hit rate is used: when the miss penalty is large (e.g. 100 cycles for a cache hit
time of 1 cycle), 99% hits is double as good as 97%.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 33 of 48

- Miss penalty: additional time required because of a miss; typically 50-200 cycles for main

memory (trend: increasing)

There are, of course, different types of cache misses:

- Cold (compulsory): occurs on first access to a block

- Conflict: most caches limit blocks to a small subset of the available cache slots (e.g. modulo

the address). Thus conflict misses occur when there is enough space but multiple data maps

to the same slot

- Capacity: active cache blocks (working set) is large than the cache

- Coherency: (see later in this chapter)

The memory hierarchy

Some slides which I consider to be obvious for a 3rd semester computer science student are omitted.

Memory hierarchy of

the Intel® Core™ i7-6700K

CPU (Skylake architecture) is pic-

tured on the right.

The reason why

caches work is be-

cause they exploit lo-

cality: temporal lo-

cality refers to the fact recently referenced items are likely to be referenced again in

the near future and spatial locality exploits the fact items with nearby addresses

tend to be referenced close together in time.

Spatial locality can be used by the programmer to speed up their code. The typical

example of good vs. bad locality (assuming a “typical” computer) is two for loops iterating over a

matrix in either row-major (good) or column-major (bad) order.

Cache organization

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 34 of 48

Cache reads

To read data from the cache, a sequence of operations is performed. First the set is located, then

it checks whether any line in the set has a matching tag. If so, it is a sit and data starting at the

offset is located. If there is no match, what happens next depends on the type of cache:

- Direct mapped: has one line per set (𝐸 = 1) and simply evicts the old line and replaces it with

the new data

- 2-way set-associative: has two lines per set (𝐸 = 2) and selects one line the set for eviction

and replacement. Selecting the line is according to the replacement policy (random, LRU, …)

Cache writes

Write-hit Write-miss

Write-through
- Write immediately to memory
- Memory is always consistent with the

cache copy
- Slow: what if the same value (or line!) is

written several times

No-write-allocate (writes immediately to
memory)
- Simpler to implement
- Slower code (bad if value subsequently re-

read)
- Seen with write-through caches

Write-back
- Defer write to memory until replacement

of line
- Need a dirty bit (indicates line is different

from memory)
- Higher performance (but more complex)

Write-allocate (load into cache, update line in
cache)
- Good if more writes to the location follow
- More complex to implement
- May evict an existing value
- Common with write-back caches

Software caches (e.g. file system buffer, web browser cache) are much more flexible, often fully

associative (using index structures like hash tables), are not necessarily constrained to block

transfers, but often have complex replacement policies (also because misses can be very expen-

sive).

Cache optimizations

To optimize the use of the cache, code should make use of spatial (access data contiguously) and

temporal (access to the same data should not be too far apart in time) locality. This can be achieved

by the proper choice of algorithm and loop transformations. The register space much smaller

[than the cache] and requires scalar replacement to exploit temporal locality. Register level opti-

mizations include exhibiting instruction level parallelism (which conflicts with locality).

Blocking

Omitted.

17 Exceptions

To change the daily stone-grind-

ing of a processor (i.e. read and

execute a sequence of instruc-

tions, one after the other, also

called control flow),

jumps/branches and calls/re-

turns can be used. To make the

control flow exceptional, excep-

tions can be used. They react to change in the system state such as data arriving from drive or

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 35 of 48

network, division-by-zero, Ctrl-C input, and the system timer. Exceptions exist at all levels of a

computer system – low-lever (hardware + OS) and higher level (context switch, signals, non-local

jumps, and language-level exceptions).

Exception vectors and kernel mode

Each type of event has a unique exception number 𝑘, whereas 𝑘 is an index into the exception

table (aka interrupt vector). Handler 𝑘 is called each time exception 𝑘 occurs. When an exception

occurs, the system enters kernel28 mode.

Synchronous exceptions

Synchronous exceptions are caused by events that occur as a result of executing an instruction.

They can be grouped into the following three categories:

Traps Faults Aborts

- Intentional
- E.g. syscalls, breakpoints,

special instructions, open-
ing a file

- Control is returned to next
instruction

- Unintentional but possibly recover-
able

- E.g. page faults, protection faults, FP
exceptions, invalid memory refer-

ence (→ segfault)

- Either re-execute current (faulting)
instruction or abort

- Unintentional
and unrecover-
able

- E.g. parity er-
ror, machine
check

- Aborts current
program

Asynchronous exceptions

Asynchronous exceptions, also called interrupts, are caused by events external to the processor

and are indicated by setting the processor’s interrupt pin. Examples include I/O such as Ctrl-C, an

arriving network packet or data being ready from disk, and hard and soft reset interrupts. The

handler returns to the next instruction.

Interrupts (whose mechanism is also used for exceptions) work as follows:

1. The CPU interrupt-request line is triggered by an I/O device (edge or level-triggered)

2. The interrupt handler receives the interrupt

3. The interrupt might be maskable which allows it to be ignored or delayed

4. The interrupt vector is used to dispatch the interrupt to the correct handler (based on

priority)

Rest of this sub-chapter is omitted.

Interrupt controllers

Programmable interrupt controllers solve the problem of e.g. interrupt conflicts and simultane-

ous interrupts. They map (mapping picked by the OS) physical interrupt pins to interrupt vec-

tors, buffer simultaneous interrupts (deliver each vector separately and make sure not to lose

some device’s interrupt), prioritize interrupts (some devices may interrupt other devices; se-

28 The kernel is the part of the OS which runs in kernel mode. Kernel mode means there’s access to system
state, some different instructions/registers, different MMU behavior, some exceptions are disabled etc. A
kernel always is a set of trap handling functions and creates the user-space processes illusion. See also
http://studysheets.ch/sheets/operating-systems/download

http://studysheets.ch/sheets/operating-systems/download

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 36 of 48

lected by the OS), and selectively mask any individual device’s interrupts (useful for high-inter-

rupt rate devices and at boot). Modern PICs also provide inter-processor interrupts, a program-

mable timer, sophisticated interrupt scheduling etc.

18 Virtual Memory

Since this was already discussed in the previously mentioned “Operating Systems and Networks”

course, I might be a little short on detailed explanations.

The problems with physical memory

1. 64-bit addresses result in 16 EB memory, but

physical main memory is often just a few GB

2. Memory management: what goes where?

3. Protect memory from other processes

4. Share memory with other processes

Solution: address translation

Each process gets its own private memory space – which basically solves all four problems above.

- Linear address space: ordered set of contiguous non-negative integer addresses, {0,1,2,3, … }

- Virtual address space: set of 𝑁 = 2𝑛 virtual addresses, {0,1,2,3, … ,𝑁 − 1}

- Physical address space: set of 𝑀 = 2𝑚 physical addresses, {0,1,2,3, … ,𝑀 − 1}

Every byte in main memory has one physical and one or more virtual address. This is managed by

the memory management unit (MMU), which also performs cache-checking.

The advantages of virtual memory (VM) are numerous: it makes more efficient use of the limited

RAM available (with e.g. paging), it simplifies memory management for programmers, and isolates

address spaces.

Some uses of virtual memory

1. Caching: blocks of memory called pages are stored on disk (as virtual pages) and cached

in DRAM (as physical pages). DRAM is about ten times slower than SRAM while still being

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 37 of 48

10,000 times faster than an HDD29. As a consequence, block sizes are rather big, the cache

is fully associative with highly sophisticated and expensive replacement algorithms, and

tends to be write-back. The reason this works is locality. The set of active virtual pages is

called working set.

2. Memory management: each process has its own virtual address space and thus views

memory as a simple linear array (yet in reality it’s scattered all over the place). Each vir-

tual page can be mapped to any physical page and can be stored in different physical pages

at different times. This allows code and data to be shared among processes.

3. Simplify linking and loading: Linking: each program has a similar virtual address space

(code, stack, and shared libraries always start at the same address). Loading:

allocates virtual pages for and sections (= creates PTEs marked as invalid).

The and sections are copied, page by page, on demand by the virtual memory

system.

4. Memory protection: extend PTEs with permissions bits which are checked by the page

fault handler before remapping. If violated: SIGSEGV.

The address translation process

Page hit
1. Processor sends virtual address

to MMU

2. MMU fetches PTE from page table

in memory

3. Same as 2.

4. MMU sends physical address to

cache/memory

5. Cache/memory sends data word

to processor

Page fault

1. Processor sends virtual address to MMU

2. MMU fetches PTE from page table in

memory

3. Same as 2.

4. Valid bit is zero, so MMU triggers page

fault exception

5. Handler identifies victim (and, if dirty,

pages it out to disk)

6. Handler pages in new page and updates

PTE in memory

7. Handler returns to original process, re-

starting faulting instruction

29 According to Prof. Hoefler fromt the mentioned “Operating Systems and Networks” course, this “maybe
decreases by a factor of 10 for SSDs”.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 38 of 48

Translation lookaside buffers

The TLB is a small hardware cache in the MMU and maps VPNs to PPNs and contains complete

PTEs for a small number of pages.

A simple memory system example

Omitted. Please have a look at slides 35 ff.

Multi-level page tables

A virtual page may refer to a page-aligned region of the virtual address space and contents thereof.

A physical page is a page-aligned region of physical memory. A physical frame (= physical page) is

an alternative terminology: page = contents, frame = container.

For a 4KB page size, a 48-bit address space (used on 64-bit machines) and 8B PTE a page table of

size 248B/212B ⋅ 23B = 239B = 512GB is required. To circumvent that problem, multi-level page

tables are used.

Case study of the Core i7 ™ virtual memory System

Partly omitted. See slides 49 ff.

Components of the virtual address (VA) Components of the physical address (PA)

- TLBI: TLB index
- TLBT: TLB tag
- VPO: virtual page offset
- VPN: virtual page number

- PPO: physical page offset (same as VPO)
- PPN: physical page number
- CO: byte offset within cache line
- CI: cache index
- CT: cache tag

Paging in x86-64 uses 48-bit virtual address (since 64 bits is a lot), 52-bit physical address (which

equals 40 bits for PPN (4KB pages, 52 − log 4096 = 40)), and there are 512 entries per page

(PT/PTE = 4096/8).

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 39 of 48

TLB entry:

Page table entries:

Level 4

Level 3

Level 2

Level 1

Flags in PTEs:

- Avail: available for system programmers

- G: global page (don’t evict from TLB on

task switch)

- PAT: Page-Attribute Table

- PCD: cache disabled or enabled

- PWT: write-through or write-back cache

policy for this page

- U/S: user/supervisor

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 40 of 48

- D: dirty (set by MMU on writes)

- A: accessed (set by MMU on reads and

writes)

- R/W: read/write

- P: page is present in physical memory (1)

or not (0)

Large pages

Large pages are created by concatenating VPN4 and VPO which results in 21 bits = 2MB pages. If

VPN3 is also used for the concatenation there are 30 available bits which result in a 1GB page,

called huge page.

Large and huge pages have advantage of terminating the page table walk early and simplify ad-

dress translation. They are useful for programs with very page, contiguous working sets (reduces

compulsory TLB misses).

Optimizing for the TLB

Omitted.

19 Multiprocessing

Consistency and Coherence

Coherency: values in caches all match each other and processors all see a coherent view of

memory. Consistency: the order in which changes to memory are seen by different processors.

Program order: the order in which a program on a processor appears to issue reads and writes

(even on a uniprocessor this isn’t equal to the order the CPU issues these calls). This only refers

to local reads/writes. Visibility order: the order which all reads and writes are seen by the pro-

cessor(s). This refers to all operations in the machine. Each processor reads the value written by

the last write in visibility order.

On modern machines most CPU cores are cache coherent which means they behave as if they were

all accessing a single memory array. This makes programming easier but is hard to implement and

memory is slower as a result.

Memory consistency (i.e. what value is read by each processor) is very important but even a sim-

ple statement like “last value written” is hard to implement which is the reason for many different

models.

Sequential Consistency

1. Operations from a processor appear (to all others) in program order.

2. Every processor’s visibility order is the same interleaving of all the program orders.

This requires each processor to issue memory operations in program order. The RAM has to have

a total order on all operations and furthermore the operations have to be atomic.

Advantages Disadvantages

- Easy to understand for the
programmer

- Easy to write correct code to
- Easy to analyze automati-

cally

- Hard to build a fast implementation
- Cannot reorder reads/writes, not even in the compiler

and not even from a single processor!
- Cannot combine writes to same cache line (write buffer)
- Serializing ops at memory controller is too restrictive

(see NUMA)

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 41 of 48

Cache coherence with snooping

The cache snoops on reads/writes from other processors. If a line is valid in the local cache and

another processor writes to that line, the local line is invalidated. This requires a write-through

cache. The line can be valid in many caches until a write happens.

Should the cache be write-back, the lines can have an additional “dirty” (modified) state, at maxi-

mum in one cache. This requires a cache coherency protocol such as MSI – Modified, Shared, and

Invalid. The cache logic responds to processor/remote bus reads/writes, change cache line state,

and write back data (flush) if required.

Unfortunately, MSI has a few issues. In the “I” state when a write miss is executed it first needs to

read the line and if someone else hast it in “M” state, it needs to wait for the flush to happen. When

in the “M” state and another core observers a remote read the line has to be flushed (obviously)

but now there’s an issue with invalidation: should the line be invalidated yet it was supposed to

be shared, there’s an extra miss. When transitioning to a shared state however, it might be remote

write miss which then causes an extra invalidate.

The MESI cache coherence protocol

MESI has four states, a new signal, and a new

bus signal:

- Modified: only copy, dirty

- Exclusive: only copy, clean

- Shared: several copies, all clean

- Invalid

- HIT: signal to remote processor its read

hit in the local cache

- RdX (read exclusive): cache can load into

either “S” or “E” state. Other caches can see

the type of read.

Observations:

- Dirty data is always written though

memory, there are no cache-cache trans-

fers which makes it an invalidation-based

protocol

- Data is always either dirty in one cache

(needs to be written back before a remote

read) or clean (can be safely fetched from

memory).

- MESI is good if the memory latency is a lot

smaller than the latency of a remote cache

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 42 of 48

Partly omitted (MOESI, MESIF).

Relaxing sequential consistency

Ways to relax SC include:

- Write-to-read: later reads can bypass earlier writes

- Write-to-write: later writes can bypass earlier writes

- Break write atomicity (no single visibility order)

- Weak ordering: no implicit order guarantees at all

Partly omitted (processor-specific ways to relax SC).

Barriers and fences

Gnerally, the weaker the consistency model is, the faster it goes in hardware. Visibility order is

essential for the correct functioning yet difficult to guarantee (compilers, memory models). Bar-

riers (aka fences) are a very good solution.

- Compiler barriers: prevent compiler reordering statements

- Memory barriers: prevent CPU reordering instructions

Multicore synchronization: Test-and-Set

One of the simplest non-trivial atomic operations

1. Read a memory location’s value into a register

2. Store “1” into the location

This requires a read-modify-write cycle (i.e. memory bus has to “locked” during instruction). It

can also appear as a register.

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 43 of 48

TAS can be very expensive since the memory has to be

locked while a long operation occurs, it has to do a read, fol-

lowed by a write while no-one else can access memory, and

if it is spinning, it slows things down. As a alternative, “Test

and Test-and-Set” can be used but to be able to use it, the

programmer needs to understand a lot of the inner workings of a lot of things. Simply put: don’t

use it, just don’t.30

Compare and Swap

CAS can implement almost all wait-free data structures for which it requires bus locking (or sim-

ilar) in the memory system.

1. Load into

2. If then store to

3. Return

The general pattern where CAS is used is read-copy-update where writers take a copy, modify it,

then write back the copy. The old version is deleted when all the readers are finished.

Since CAS reports when a single location is different

but does not report when it is written (with the same

value), it suffers from the ABA problem. To solve this,

the values has to change always. This is done by split-

ting the value into the original value and a monoton-

ically increasing counter. (Yet, everything can be done

fast with CAS, if you’re slightly clever.)

Simultaneous multithreading

Cache-coherent SMP still has the memory as its bottleneck – all accesses to main memory stall the

processor (even with MOESI, which allow reads to be serviced from another cache). And memory

stalls halt the processor, also other processors which access memory. During these times when

the processor is waiting for memory/another cache, most functional units are idle and many in-

structions do not require the memory unit, yet ILP is limited due to data dependencies. This leads

to the idea of executing instructions in other threads (there are multiple fetch/decode units and

registers) to reuse superscalar functional units. This is done by labelling instructions in hardware

with a thread id. A CPU which does this appears as multiple CPUs to the OS. The benefit is around

10-20% but since it’s cheap (transistor-wise) to implement, it’s worth it, especially for lots of

memory-intensive requests (not so much scientific computing though).

Non-Uniform Memory Access (NUMA)

NUMA removes the memory bottleneck by having multiple, independent memory banks to which

processors have independent paths. The interconnect is not a bus anymore but a network link

(which passes messages). All memory is globally addressable but local memory is faster.

NUMA cache coherence

To ensure cache coherency in a NUMA environment, either the bus is emulated (similar to snoop-

ing but with messages) or a cache directory is used, where each entry consist of the cache line,

30 Just quoting slide 47…

The “ABA” problem:

1. CPU A reads value as x

2. CPU B writes y to value

3. CPU B writes x to value

4. CPU A reads value as x

⇒ concludes nothing has changed

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 44 of 48

the owner, and one bit per node indicating presence of this line in that node. This si useful when

lines are not widely shared and when there are a lot of NUMA nodes since it reduces interconnect

traffic and load at each node yet it requires lots of fast memory.

Performance implications of multicore

- Memory latency

- Cache access latency

- False sharing

Optimization example: MCS locks

Omitted.

20 Devices

Some parts of this chapter were copied shamelessly from http://studysheets.ch/sheets/operating-

systems/download. Inspiration came from the same behavior by Prof. Roscoe and Prof. Hoefler.

To an OS programmer, a device is a piece of hardware visible from software occupying some loca-

tion on a bus. It also has a set of registers (which are memory mapped or in IO space) and is a

source of interrupts. It also may imitate Direct Memory Access transfers.

Device registers

CPU can load from device registers:

– Obtain status info

– Read input data

CPU can store to device registers:

– Set device state and configuration

– Write output data

– Reset states

Registers can be addressed in different ways: memory mapped31, using I/O instructions, or using

indirection (to save I/O space). These registers do not behave like RAM since they might change

without writes from the CPU and writes to these registers are used to trigger actions (e.g. send

data, reset state machine …).

The details of registers are given in chip “datasheets” or “data books” (this information is rarely

trusted by OS programmers). A very simple UART (Universal asynchronous receiver/transmitter)

driver might be using programmed IO (PIO):

- CPU explicitly reads and writes all values to and from registers

- All data must pass through CPU registers

And uses polling:

- CPU polls device register waiting before send/receive

- Can’t do anything else in the meantime

- Without CPU polling, no I/O can occur

31 cf. Digital Circuits class MIPS programming

http://studysheets.ch/sheets/operating-systems/download
http://studysheets.ch/sheets/operating-systems/download

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 45 of 48

Dealing with caches

Dive register access must bypass the cache (PTEs have the “no cache” flag set) to avoid possible

inconsistencies caused by non-CPU writes. Additionally write-back caches and write buffers can

cause problems, and read and writes cannot be combined into cache lines.

Direct Memory Access

Direct Memory Access is used to avoid programmed I/O for lots of data (e.g. fast network or disk

interfaces). This requires a DMA controller (which is generally built-in) and this bypasses the CPU

to transfer data directly between I/O device and memory thus not taking up CPU time and might

save memory bandwidth and there’s only one interrupt per transfer. There’s no need for the CPU

to copy data which in turn does not pollute its cache. Memory can be accessed on demand and

there is a performance gain because CPU and device work in parallel.

Caches Virtual memory
Due to DMA memory becomes inconsistent with CPU

caches. This leaves these options:

– CPU can map DMA buffers non-cacheable → large

hit, probably wants to process data anyway

– Cache can “snoop” DMAC bus transactions (but

doesn’t scale beyond small SMP systems)

– OS can explicitly flush/invalidate cache regions →

cache management important part of device drivers

DMA addresses are physical yet OS

and user mostly deal with virtual ad-

dresses. This requires address trans-

lation, possibly more than just a

hardware page table due to non-con-

tiguity of the physical address space.

Newer systems provide an IOMMU,

which does the same for the I/O de-

vices as MMU does for the CPU.

Device drivers

Driver and device are both state machines which need data to be transferred between each other

and signals are used to signal state transitions. There are four states: write a device register, read

a device register, device request interrupt, and shared memory (which is the only asynchronous

state).

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 46 of 48

Buffer rings and descriptor rings

The ring consists of either buffers in contiguous memory or pointers (descriptors) to other bits

of memory. OS and device pointers move independently around the ring. This provides a buffer of

packets and requires very little explicit coordination. Most modern devices deal with buffer de-

scriptors which offer – via a level of indirection – pointer area(s) of memory and metadata. This

allows software more flexible data placement, variable sized buffers which can vary dynamically.

Additionally, this does not require data and metadata to be mixed.

What happens when one pointer catches up with the other? (overruns and underruns; this cor-

responds to producer-consumer queues using messages and interrupts and not by using

mutexes/monitors/condition variables/threads)

Transmit Receive

Device has no more packets to send → it must

wait

- Could continue to poll memory until next

descriptor is owned by it

- Could go to sleep and signal the software

to wake it up

CPU has no more slots to send packets → must

wait

- Can spin polling, but inefficient

- Signals device to interrupt it when a

packet has been sent i.e. a buffer slot is

now free

Device has no buffers for received packets →

starts discarding packets

- Not as bad as it sounds

- Will start copying them to memory when a

buffer is free

- Signals that it’s lost some in a status regis-

ter

CPU reads all received packets → it must wait

- Can spin polling, but inefficient

- Signals device to interrupt it when a new

packet has been received

- Goes off to do something else

More complex devices

Omitted.

Device initialization

To initialize a device, the system and the device need to ensure state transitions are synchronized,

which is done as follows:

1. Wait for the hardware to settle down

2. Stop the device doing anything, just to be sure: no interrupts, no DMA, no sending packets

3. Create shared data structures: e.g. descriptor rings, must tell device where they are!

4. Write registers to start device running

I/O state machines (hardware side)

1. DMA Read: descriptor

2. If then enter state “stopped”

3. DMA Read: buffer

4. Send packet

5. DMA Write: ← “ ”

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 47 of 48

6. Calculate next descriptor address: next in memory (for unchained) or value of buffer field

2 (for chained mode)

7. Go to 1.

I/O state machines (software side)

Since PCI-based DMA transfers are only coherent with CPU caches on x86, the following needs to

be implemented:

 DMA reads DMA writes

Before CPU should flush the cache for that address

→ main memory is up to date
CPU should flush or invalidate cache →

no dirty lines left to write to memory
After CPU should invalidate cache for that ad-

dress → cache doesn’t hold old value
CPU invalidates cache → cache doesn’t

hold old value

Discoverable busses: PCI

Peripheral Component Interconnect (PCI) is an electrical standard for connecting devices., a

standard for physical connectors, a set of bus protocols for inter-device communication, and a

software-visible interface to I/O hardware. It tries to solve many problems:

Lecture Summary Systems Programming and Computer Architecture on 1/28/2016

Version 1.1b as of 1/4/2016 Page 48 of 48

– Device discovery: finding out which devices are in the system

– Address allocation: which addresses should each device’s registers appear at?

– Interrupt routing: which interrupt signals from the device should map to which exception

vectors?

– Intelligent DMA: “bus mastering” devices no longer need a DMA controller

The connections are represented as a tree, the address space is flat. PCI devices are self-describing.

To find all the devices, you first must find the PCI “root complex” bridge atop of the tree. Then the

configuration is read to find all attached devices, add them to the list of devices and functions, and

record requirements for address space – if it is a bridge, recurse. This results in a list of all devices,

complete with their address space requirements.

To allocate addresses, find address ranges for each device and bridge

Requirements include:

– Each device has the size of address ranges it needs

– All devices “below” a bridge have ranges that fit into the bridge’s range

– Each bridge has a range which includes all it’s “children”.

– Each range is aligned to some power-of-2 boundary

When these requirements are found, the following needs to be programmed:

– Each PCI bridge with translation information

– Each device with “base-address/range” (BAR) registers

PCI interrupts

Four interrupt lines

– INTA, INTB, INTC, INTD…

– Bridges allow arbitrary wiring

of device lines to bridge lines

– Translated by root bridge into

system interrupt

PCI Express introduces MSIs

– Message-signaled interrupts

– Interrupt encoded as PCI write to specified address

range

– Translated by root bridge into system interrupt

– Interrupts can be individually steered to particular

cores/APICs

PCI allows bus mastering: a device can issue read/write transactions to anywhere in memory,

even to other PCI devices. This makes external DMA controllers obsolete since the controller is

effectively integrated with the device itself while still following the principle of the device DMA-

ing data to/from memory. This gives much more flexibility and allows for more intelligence.

A quick look at the future

Omitted.

Sources
Unless otherwise noted: Lecture slides by Timothy Roscoe available on the course website accom-

panying the course 252-0061-00L taught in the fall semester 2015 at ETH Zürich. That ETH course

in turn is partly based on CS 15-213 at Carnegie Mellon University and CSE333 at the University

of Washington. Simple definitions might be from Wikipedia.

