
Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 1 of 12

Midterm I

This document is not yet complete. Missing are the following:

 Notes/comments/remarks on exercises 3&4

The missing parts will most likely be added Thursday, March 20, 20141. The document’s version will then

change from 1.1b to 1.2b

Table of Contents
01 Course Overview .. 2

02 Parallel Architectures .. 2

03 Basic Concepts ... 3

04 Parallel Models .. 5

05 Introduction to Programming ... 7

06 Java Basics ... 7

07 Loops – Objects – Classes... 7

08 Threads ... 8

09 Synchronization: Introduction to locks .. 9

10 Synchronization: Using Locks and Building Thread-Safe Classes ..11

Exercises 1 ..12

Exercises 2 ..12

Exercise 3 ..12

Exercise 4 ..12

Info
There is no claim for completeness. All warranties are disclaimed.

Creative Commons Attribution-Noncommercial 3.0 Unported license.

1 I’m in a Thursday exercise group

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/2.5/ch/

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 2 of 12

Study Part
The contents are structured according to the lecture slides. Some of the texts are 1:1 copies from the lecture

slides available at http://ait.inf.ethz.ch/teaching/courses/2014-SS-Parallel-Programming/. For the sake of read-

ability and quicker typing, those excerpts are often simply in double quotes. And sometimes they are simply

paraphrased. All credit goes to Prof. Dr. O. Hilliges and Dr. K. Kourtis.

01 Course Overview

 Even though Moore’s Law2 is still valid, heat and power consumption are of primary concern. These chal-

lenges can be overcome with smaller and more efficient processors or simply more processors. TO make

better use of the added computation power, parallelism is used.

 Parallel vs. concurrent: (quoted); in both cases, one of the difficulties is to actually determine which pro-

cesses can overlap and which can’t

› Concurrent: focus on which activities may be executed at the same time (= overlapping execution)

› Parallel: overlapping execution on a real system with constraints imposed by the execution plat-

form

 Parallel/concurrent vs. distributed: In addition to parallelism/concurrency, systems can actually be

physically distributed (e.g. BOINC).

 Concerns in PP: (quoted)

› Expressing parallelism

› Managing state (data)

› Controlling/coordinating: parallel tasks and data

02 Parallel Architectures

 Turing machine: (quoted) infinite tape, head for

r/w, state register

 Computers today: consist of CPU, memory and

I/O; “stored program” i.e. program instructions

are stored in memory and program data, too

(von Neumann)

 Since access memory became slower than ac-

cessing CPU registers, CPUs now have caches

which are closer (and thus faster but also

smaller) to the CPU (locality of reference 

principle of locality); L1, L2, L3, … cache

 “Applying parallelism to improve sequential processor performance: vectorization3, pipelining4, Instruc-

tion Level Parallelism (ILP)”

 Pipelining: There is a lead in and a lead out where system is warming up/cooling down (resp.) and full

utilization (which is to be maximized). On a CPU:

 ILP: “Pipelining; Superscalar CPUs: Multiple instructions per cycle / multiple functional units; Out-of-Or-

der (OoO) execution: Potentially change execution order of instructions, as long as the programmer ob-

serves the sequential program order; Speculative execution: predict results to continue execution”

2 Actually an observation; “The number of transistors on integrated circuits doubles approximately every two years”
3 Applying an operation on every element of a vector in parallel instead of sequentially; instead of 1-at-a-taime, N-at-a-time
4 Think laundry

Instr. Fetch Instr. Decode Execution Data access Writeback

http://ait.inf.ethz.ch/teaching/courses/2014-SS-Parallel-Programming/

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 3 of 12

 For a long time, Moore’s Law and ILP

made sequential programs exponentially

faster but due to power dissipation (ex-

pensive to cool CPUs), CPUs becoming

faster than memory access and not being

able to ILP a program anymore, it was “no

longer affordable to increase sequential

CPU performance”. The solution was mul-

ticore processors which, however, first

needs programmers to write programs

which can actually take advantage of the

new hardware.

 “Shared memory architectures: SMT (Intel’s Hyperthreading; Simultaneous MultiThreading), Multicores,

SMP, NUMA”

 SMT: “single core, multiple threads, ILP vs. multicore: ILP multiple units for one thread, SMT multiple

units for multiple threads”

 CMP/multicores: “dual, quad, x8 etc. ; each has its own hardware, yet might share part of the cache hier-

archy”

 SMP: “multiple chips (CPUs) on the same system: CPUs share memory – same cost to access memory; CPU

caches coordinate – cache coherence protocol”

 NUMA/Non-uniform memory access: memory is distributed (local/remote) at the cost of speed, shared

memory interface

 Distributed memory5: organized in clusters

 Flynn’s taxonomy: [S|M]I[S|M]D where S = single, M =multi, I = instruction, D = data; used to classify dif-

ferent types of architectures

 GPUs are badass! (and they’re great for data parallelism)

03 Basic Concepts

 Performance in sequential execution: computational complexity 𝑂, Θ and execution time

 Sequential programs are much easier to write, yet parallel programming has better performance

 Parallel performance formulae:

𝑇1: 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, 𝑇𝑝: 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑛 𝑝 𝐶𝑃𝑈𝑠

𝑇𝑝 >
𝑇1
𝑝
, 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑙𝑜𝑠𝑠, 𝑛𝑜𝑟𝑚𝑎𝑙; 𝑇𝑝 =

𝑇1
𝑝
, 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑜𝑛; 𝑇𝑝 <

𝑇1
𝑝
, 𝑠𝑜𝑟𝑐𝑒𝑟𝑦

𝑆𝑝: 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑜𝑛 𝑝 𝐶𝑃𝑈𝑠; 𝑆𝑝 =
𝑇1
𝑇𝑝

𝑆𝑝 = 𝑝, 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑝𝑒𝑒𝑑𝑢𝑝, 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑜𝑛; 𝑆𝑝 < 𝑝, 𝑠𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑝𝑒𝑒𝑑𝑢𝑝, 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑙𝑜𝑠𝑠

𝑆𝑝 > 𝑝, 𝑠𝑢𝑝𝑒𝑟𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑝𝑒𝑒𝑑𝑢𝑝, 𝑠𝑜𝑟𝑐𝑒𝑟𝑦

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦:
𝑆𝑝

𝑝

𝐴𝑚𝑑𝑎ℎ𝑙′𝑠 𝐿𝑎𝑤6 (𝑏 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑟𝑡, 1 − 𝑏 = 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑝𝑎𝑟𝑡):

𝑇𝑝 = 𝑇1 ⋅ (𝑏 +
1 − 𝑏

𝑝
) , 𝑆𝑝 =

𝑝

1 + 𝑏 ⋅ (𝑝 − 1)

5 See Top500
6 Very optimistic approach, Gustafson was more realistic: it considers problem size, runtime (and not problem size) is con-
stant, more process can solve larger problems in the same time, parallel part scales with he problem size

https://www.youtube.com/watch?v=2t6GFfc7PLM

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 4 of 12

𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛′𝑠 𝐿𝑎𝑤 (𝑏 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑟𝑡): 𝑇1 = 𝑝(1 − 𝑏) ⋅ 𝑇𝑝 + 𝑏 ⋅ 𝑇𝑝, 𝑆𝑝 = 𝑝 − 𝑏(𝑝 − 1)

 Scalability: how well a system reacts to increased load; in

PP: speedup with more processors (even to ∞), linear

speedup is desirable

 Reasons for performance loss: program may not contain

enough parallelism, overhead (due to pp), architectural

limitations (think group work/presentation)

 Concurrency vs. parallelism: “Concurrency is: a program-

ming model, programming via independently executing

tasks, about structuring a program, example: network

server, a concurrent program does not have to be paral-

lel; Parallelism is about execution, concurrent program-

ming is suitable for parallelism”

 Code and data – code doesn’t change over time while data does

 Expressing parallelism: Work partitioning (splitting up work of a single program into parallel tasks)

which can be done manually (task parallelism; user explicitly expresses tasks) or automatically by the

system (data parallelism; user expresses and operation and the system) (quoted)

 Work partitioning & scheduling (quoted): work partitioning: split upwork into parallel tasks, (done by

user or system), a task is a unit of work, also called: task decomposition; scheduling: assign tasks to

processors, (typically done by the system), goal: full utilization (no processor is ever idle)

 Coarse vs. fine [task] granularity: fine granularity is more portable and better for scheduling, parallel

slackness7, but overhead may grow (too) big

7 expressed parallelism ≫ machine parallelism

Performance

GeneralityProductivity

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 5 of 12

 Coordinating tasks: enforcing a certain order since e.g. task X needs the result of/has to wait for task A to

finish; example primitives: barrier, send(), receive()

 Managing state concerns: shared vs. distributed memory architectures; which parallel task access which

data and how (r/w); potentially split up data; task, then data or data, then tasks (quoted)

 Coordinating data access (quoted): distributed data: no coordination (e.g., embarrassingly parallel), mes-

sages; shared data: controlling concurrent access, concurrent access may cause inconsistencies, mutual

exclusion to ensure data consistency

04 Parallel Models

 PP is not uniform, many different approaches (!)

 PP paradigms (quoted): task parallel: Task Parallel: Programmer explicitly defines parallel tasks (generic,

not always productive); Data parallel: An operation is applied simultaneously to an aggregate of individ-

ual items (e.g., arrays) (productive, not general)

Task Parallelism

 Tasks execute code, spawn other task and wait for results from other tasks

 Tasks can execute in parallel (decided by the scheduler), task graph is dynamic

(unfolds) – wider task graph = more parallelism

 𝑇1: 𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘 (𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙)
𝑇1
𝑇𝑝
: 𝑠𝑝𝑒𝑒𝑑𝑢𝑝, 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 𝑇𝑝 ≥

𝑇1
𝑝
, 𝑇𝑝 ≥ 𝑇∞

𝑇∞: 𝑠𝑝𝑎𝑛, 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ, 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑝𝑎𝑡ℎ

 Scheduling: assigns task to processor, upper bound 𝑇𝑝 ≤
𝑇1

𝑝
+ 𝑇∞ can be achieved

with a greedy scheduler (all processors are executing tasks, if enough tasks available), optimal with a

factor of 2, linear speedup for
𝑇1

𝑇∞
≥ 𝑝

 Work stealing scheduler: provably 𝑇𝑝 =
𝑇1

𝑝
+𝑂(𝑇∞), empirically 𝑇𝑝 ≈

𝑇1

𝑝
+ 𝑇∞, linear speedup if

𝑇1

𝑇∞
≫ 𝑝,

parallel slackness (granularity)

 Common structure for divide & conquer (e.g. accumulator/∑𝑎𝑖):
Divide and Conquer:
 if cannot divide:
 return unitary solution (stop recursion)
 divide problem in two
 solve first (recursively)
 solve second (recursively)
 combine solutions
 return result

 Task graph can also be static, e.g. pipeline, streaming, dataflow

 Dataflow: Programmer defines: what each task does and how the tasks are connected

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 6 of 12

 Pipeline8: time unit is determined by the slower/slowest stage (stalling), every stage should take the

same amount of time; can be achieved by using splits and joins for parallel stages

 Scheduling dataflow programs: scheduling: assigning nodes (tasks) into processors, 𝑛 < 𝑝: cannot utilize

all processors,𝑛 = 𝑝: one node per processor, 𝑛 > 𝑝: need to combine tasks; portability, flexibility (par-

allel slackness), balancing, minimize communication (graph partitioning); dataflow is a good match for

pp, since the programmer isn’t concerned with low-level/edge implementation details; can be general-

ized with feedback loops (performance becomes more difficult, though)

Data Parallelism

 In data parallelism, the programmer describes an operation on an aggregate of data items (e.g., array);

work partitioning is done by the system; declarative: programmer describes what, not how

 Map/reduce: map example: 𝐵 = 2 ⋅ 𝐴 where actually 𝑏𝑖 = 2 ⋅ 𝑎𝑖∀𝑖; reduce example: d&q accumulator

making use of associativity and commutativity (second example: max ()9)

 Parallel loops can be used for work partitioning by adding generality yet possibly introducing “weird”

bugs due to data races (e.g. operation on 𝑎𝑖 depends on 𝑎𝑖−1)

Managing State

 Main challenge for parallel programs

IMMUTABILITY ISOLTEAD MUTABILIY MUTABLE/SHARED DATA

 data do not change
 best option, should be used

when possible

 data can change, but only
one execution context can
access them

 message passing for coor-
dination

 State is not shared – each
task holds its own state

 (async) messages
 Models: actors, CSP (Com-

municating Sequential Pro-
cesses)

 data can change / all execu-
tion contexts can poten-
tially access them

 enabled in shared memory
architectures

 however: concurrent ac-
cesses may lead to

 inconsistencies
 Solution: protect state by

allowing only one execu-
tion context to access it
(exclusively) at a time; e.g.
using locks (good perfor-
mance, correctness issues)
or transactional memory
(correct, bad performance)

8 Already discussed earlier to some extent
9 Similar: prefix scan

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 7 of 12

05 Introduction to Programming

I’m not going to talk about syntax and the like, you can read up on this in the lecture slides.10

 Old Egyptian Multiplication: say you want to multiply 𝑎 with 𝑏. In one column you keep writing down 2𝑛

as long as this is ≤ 𝑎. In the other column you start with b (for row a=1) and then keep doubling the last

row until you reach the last row of 2𝑖 . Then you figure out which 2𝑖 form a, cross out the other rows and

then add up the corresponding rows. Example: 27 ⋅ 12 = (16 + 8 + 2 + 1) ⋅ (12 + 24 + 96 + 192) = 324

27 = 16+8+2+1 12
1 12
2 24
4 48
8 96
16 192
32 384

 Russian Peasant Multiplication: In one column (division column) you keep dividing the number 𝑎 (while

floor()11-ing if need be)until you reach 1 while in the other column (multiplication column) you keep

multiplying 𝑏 as long as the corresponding row in the division row hasn’t yet reached 1. In binary you

keep deleting the LSB in the division column while adding 0s in the multiplication column. Then you cross

out lines with an even number in the division column and sum up the values in the remaining multiplica-

tion column. This method is super great for CPUs! Note: If the multiplicand is odd, you have to add 𝑎 in

the end (die to underestimating 𝑎)

Formally: 𝑎 ⋅ 𝑏

{

𝑎, 𝑖𝑓 𝑏 = 1

2𝑎 ⋅
𝑏

2
, 𝑖𝑓 𝑏 𝑒𝑣𝑒𝑛

𝑎 + (2𝑎 ⋅
𝑏−1

2
) , 𝑒𝑙𝑠𝑒

, recursive: 𝑓(𝑎, 𝑏) =

{

𝑎, 𝑖𝑓 𝑏 = 1

𝑓 (2𝑎,
𝑏

2
) , 𝑖𝑓 𝑏 𝑒𝑣𝑒𝑛

𝑎 + 𝑓 (2𝑎,
𝑏−1

2
) , 𝑒𝑙𝑠𝑒

 Important concept of Exception Handling; main keywords: try{…}catch(…){…} and throw[s] …

06 Java Basics

 Java is an interpreted (using compiled byte code) language running in the Java Virtual Machine (JVM),

making it possible to run on virtually any computing device

 When writing an algorithm: KISS (keep it simple and stupid), group it logically, try to write re-usable

code, DRY (don’t repeat yourself)

 In Java, the ‘main’ method has a special significance, it gets called at runtime automatically as an entry

point

 Java uses types (strongly typed) – primitive12 (byte, short, int, long, float, double, char, boolean) and ob-

ject (String, and all the rest); everything has a type (and needs to be declared as such); Types can be cast

using myInt = (int) myFloat

07 Loops – Objects – Classes

 Loops can be definite (think ‘for’), indefinite (think ‘while’) and sentinel13 (until a sentinel value is seen)

 Fencepost problem (off-by-one error): (Wikipedia) “It often occurs in computer programming when an

iterative loop iterates one time too many or too few.”, can be avoided by e.g. using a do-while loop

10 No offense!
11 Round down to the nearest integer, ⌈𝑛⌉
12 Which are not real objects, instead they have a wrapper class
13 German (here): Markierung

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 8 of 12

 Arrays14 are zero-based and use key-value pairings (or index-value), play well with for(each) loops; ar-

rays are reference types; Arrays can throw ArrayIndexOutOfBoundsException if not implemented cor-

rectly/thought through

 Strings aren’t created with ‘new’, they actually are a ‘char’-array; strings can’t be compared with ‘==’15

(reference comparison of objects)

 Classes are code (just like a blueprint) while objects are instantiated classes (code vs. runtime); objects

contain data (variables) and objects (methods); classes are (often) abstractions

 Null is special (can be used for a non-argument, return value for failed calls, default value of a variable

etc.)

 Encapsulation: very important in OO – every object has internal and external view, it’s also a form of

protect (information hiding), methods maintain data integrity, different visibility keywords (public (eve-

rywhere), private (only from this class), protected (current package and subclasses, regardless of pack-

age)); benefits: protects from unwanted access, implementation can be changed later, object’s state can

be constrained (invariants)

 Java uses packages (for namespacing)

 ‘this’ refers to the implicit parameter inside your class

 Class methods are marked with ‘static’ (can be called from a static context, e.g. main()); they’re often

generic and need no access to object variables and methods; serve as utility functions

08 Threads

 Multitasking: concurrent execution of

multiple tasks: time multiplexing on

CPU (creates impression of parallel-

ism even on single core system); al-

lows for asynchronous I/O

 Process context: instruction counter,

register content, variable values,

stack content, resourcing

 Process states: main memory: cre-

ated, waiting, running, blocked, termi-

nated; page file/swap space: swapped

out waiting, swapped out blocked

 Process management: CPU

time, memory; tasks man-

aged by OS: start/terminate

processes, control resource

usage, schedule CPU time,

synchronization of processes,

inter-process communica-

tions

 Process control blocks

(PCB)(see image) – process

level parallelism can be complex and expensive

14 ‘int diaryEntriesPerMonth[] = new int [31]’
15 ‘equals()’

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 9 of 12

 Threads are light weight processes,

they are independent sequences of ex-

ecution but multiple threads share the

same address space, they aren’t

shielded from each other but share re-

sources and can communicate more

easily, context switching is much more

efficient; advantages: reactive system

by constant monitoring, more respon-

sive to user input (GUI interruption),

server can handle multiple clients sim-

ultaneously, can take advantage of parallel processing

 Overriding methods: a subclass’ method replaces a superclass’ version of the same method

 Interface: list of method a class can implement; gives you an is-a relationship and without code-sharing

(inheritance shares code)

 Creating threads in Java: extends ‘java.lang.Thread’ (override method, run()/start(); implement

‘java.lang.Runnable’16 (run()), if already inheriting from a class17, ‘Thread’ implements ‘Runnable’

 Every Java program has at least one execution thread (which calls main()), each call to Thread.start()

creates a new thread (but not just the creation of a Thread object and run() doesn’t start a thread either),

program ends when all threads finish yet they can continue even if main() returns

 A thread has the following attributes (getters and setters): ID, name, priority (1…10), status (new, run-

nable, blocked, waiting, time waiting, terminated)

 A thread can throw ‘InterruptedException’; can be requested by Thread.interrup() but can be ignored;

fain grained control with isInterrupted(), interrupted()

 Checked exceptions (quoted): represent invalid conditions in areas outside the immediate control of the

program (network outages, absent files); are subclasses of Exception; a method is obliged to establish a

policy for all checked exceptions thrown by its implementation (either pass the checked exception further

up the stack, or handle)

 Unchecked exceptions (quoted): represent conditions that, generally speaking, reflect errors in your

 program's logic and cannot be reasonably recovered from at run time (bugs); subclasses of RuntimeEx-

ception, and are usually implemented using IllegalArgumentException, NullPointerException, or Ille-

galStateException; a method is not obliged to establish a policy for the unchecked exceptions thrown by

its implementation (and they almost always do not do so)

 (quoted) Threads can make concurrent (and asynchronous) workflows faster even on single core ma-

chines. If execution units are well separated they can make programs even simpler to write.; for data

heavy and compute intensive parallel programs there is usually no speed-up beyond the number of phys-

ical cores; Even then scheduling and communication overhead might reduce performance gains

09 Synchronization: Introduction to locks

 need for synchronization: races

 in a sequential program, 1:1 of program and data, in a parallel (multi thread) program, many different

threads need to access data - data needs to be protected since concurrent access *might* (-> in sequential

16 ‘public class [Name] implements Runnable {}’
17 Java doenst have multiple inheritance

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 10 of 12

program, bugs become apparent quickly (Exception: boundary conditions)) lead to inconsistencies, con-

current access bugs often depend on execution conditions (#CPUs, load, timing) and (thus) they're diffi-

cult to reproduce

 sequential algorithms assume they act alone, thus them acting on data is unsafe; hardware/software op-

timizations assume sequential execution (which can mess up things)

 Example: circular doubly linked list: every node has a forward and a backward pointer and the list is

circular (last and first are linked); easy to insert sung four operations - remove is two operations (easy

as well); remove() with 2 threads can create a mess (depending on the scheduling)

 race condition: correctness depends on relative timing; data race: unsynchronized access to shared mu-

table data; most race conditions are due to data races (but not always)

 avoiding race conditions: very difficult to consider all possible execution interleavings; instead use locks,

locks - atomicity via mutual exclusions

 atomicity: operations A and B are atomic with respect to each other, if "thread 0 executes all of A, thread

1 executes all of B and Thread 0 **always** perceives either all of B or none of it"; intermediate state

cannot be observed, only start and end

 atomic mutual exclusion works on sequential algorithms (with no or little adaption)

 thread safety: apply OO techniques (encapsulation): design "thread safe classes" which encapsulate any

needed synchronization so that the clients don't need to worry about that; you should build your program

by composing thread-safe classes (which isn't always easy); definition: "Behaves correctly when accessed

by multiple threads" and doesn't require synchronization from users

 concurrent access breaks many assumptions from sequential programming (counter-intuitive); perfor-

mance vs productivity

 we cannot make any assumptions about relative execution Speed of threads (-> synchronization with

sleep() is wrong); even a single instruction is not atomic (value++ needs READ, INCREMENT, STORE);

can be avoided using Java keyword "synchronized"

 Basic synchronization rule: Access to shared and mutable state needs to be **always** protected - Access

includes both reads and writes (fine print: you can break it if you know and understand architectural

details)

 Locks: a lock object instance defines a critical section; lock->enter, unlock->leave; there can be only one

(thread)

 Java has intrinsic locks, each Java object contains a lock (built-in, for your convenience yet undesired

implications (size)); can be used via they keyword "synchronized" on code blocks or entire function

 reentrant lock: (example: two synchronized functions, and one function calls the other) if a thread tries

to acquire a lock it already holds it succeeds (normally this leads to deadlock, where the program is una-

ble to proceed); in Java intrinsic locks are reentrant

 reentrant: per-thread acquisition, non-reentrant: per-invocation locks (some argue this is better since

you need to think harder); trade-off: flexibility <-> productivity

 explicit locks: not a replacement for "synchronized", provides more flexibility (additional calls, non-block

structured locks)

 synchronized vs function call: synchronized: part of the language, less error-prone but less flexible; func-

tion call: library, error-prone but more flexible

 reentrant lock using lock interface with try/catch/finally{unlock}

 Example: synchronizing circular doubly linked list: if every single call has its own "synchronized", inter-

leavings are still possible, correctness depends on the semantics of the program, operations need to be

synchronized *properly* (one of the reasons why PP is hard)

 rule: to preserve state consistency, update related state variables in a single atomic operation (simple

approach: use "synchronized" on (every) method)

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 11 of 12

 Java servlets (implementing an interface), multiple threads for better performance are a good idea as

long as they're thread-safe, they **have to**

 counters can be "synchronized", too, for thread-safety

 use built-in mechanisms where available (e.g. java.util.concurrent.atomic.AtomicLong) - caching results

(memorization): cache input->result; might save expensive computation (followed by storing the result

in the cache using .clone()); yet one might lose parallelism by using "synchronized" on the whole function

-> use "synchronized" only on critical sections (for cache r/w access) instead of on the whole function

 locks and Amdahl's Law: at some point (if you keep adding processors), the "synchronized" parts will

dominate (so keep them at minimum)

10 Synchronization: Using Locks and Building Thread-Safe Classes

 - model: n threads, m resources

 coarse-grained locks (big lock), locking all resources (critical section), threads are serialized, but bad per-

formance

 fine-grained locks, e.g. every resource is protected by one lock (note: 1 thread may have multiple locks),

better performance; problems: using multiple locks for one thread, deadlock is possible

 deadlock: no thread is able to continue, caused by circular dependencies; runtime condition; necessary

conditions: mutual exclusion (at least one resource must be non-shareable), had and wait (a thread holds

at least a lock that it has already acquired, while waiting for another lock), no forced lock release (locks

can only be released voluntarily by the threads (and not by system)), circular wait (e.g. p[1] waits for p[2]

and so on and p[n] waits for p[1]); mutual exclusion, hold and wait and no forced lock release can't be

broken with "synchronized" and breaking them leads to complicate synchronization schemes

 breaking the circular wait condition: set of global order of locks, acquire locks respecting that order, im-

possible to create a condition of circular wait -> impossible to deadlock

 Example: Hash Table (key, hash function, buckets, collision lists); attempt to make it thread-safe: huge

lock around the whole data structure (apply hash() to key, locate bucket, search for key in the list and, if

found, return value) - bad, Amdahl's Law: synchronized part will dominate eventually; per-bucket lock

(search for key in the list and, if found, return value)

 Example: Hash Table: per-bucket locks - discussion: operations involving only a single key (insert, lookup,

remove) are easy; swap(key1, key2): exchanges values between those two keys *atomically*, locking with

a single lock is trivial, but what about multiple locks?: 1st attempt: lookup() twice, then insert() twice,

each one locked: intermediate state might be observed between the two insert()s, 2nd attempt: lock both

buckets -> no intermediate state can be observed (locate both buckets and then, while synchronized,

search for both keys and swap them), however there's the possibility of a deadlock which can be avoided

with lock ordering (using the hash table's indexes; special case for the same bucket if locks aren't reen-

trant)

 Visibility – synchronization also enforces visibility

 in example (42) the reason(s) for the problem are: until a few years ago, sequential performance was the

main focus, thus optimizations were done with respect to sequential programs (CPU/compiler tuning,

out-of-order execution) are only guaranteed for sequential execution (and cancelling them isn't afforda-

ble) and thus counter-intuitive behavior in parallel settings is common

 building thread-safe classes: immutable and stateless are always thread-safe (assuming correct Initiali-

zation), mutable and shared data needs to be protected; try to avoid synchronization since it's difficult to

reason about locks and there are performance issues (->immutable/stateless)

 'final' keyword in Java: final class cannot be subclassed, final method cannot be overridden or hidden,

final variable can only be initialized once (and only in the class constructor) (but referenced object *can*

be changed)

Midterm I Parallel Programming | 3/25/2014

Version 1.0b from 3/17/2014 Page 12 of 12

 immutable objects in Java - properties: 1) its state cannot be modifier *after* construction, 2) all fields

are final, 3) it's *properly constructed* (= final fields need to be set in the object constructor; when the

constructor is done, the object is immutable; while the constructor runs, the object is mutable; it should

not be access during that time); they are always thread-safe!

 Generics – motivation: the implementation of e.g. a linked list is independent from the indulging element

used (implementor perspective); static checks for linked lists operations (user perspective); decoupling

of data structure and algorithms that operate on them

 improper construction: 'this' escapes

 'AtomicReference<V>' is an atomic access to a reference of V (comparable (with care) with 'volatile')

 immutable vs non-immutable objects: immutable objects are special which is specified in the Java

memory model and they don't require safe publication while non-immutable objects need to published

safely since no ordering guarantees are proved by the memory model and a thread might observe a non-

safely published object in an inconsistent state

Exercises 1

 Nothing of particular interest

Exercises 2

 Keep Amdahl’s Law in mind

 Know how to draw/analyze/optimize a pipeline and calculate speedup etc.

 Height of a tree is log2 𝑛 18

 Loop: if an element’s operation depends on the value of a previous element, you can’t parallelize that

loop. If an element’s operation depends only on its own value, you can parallelize that loop.

Exercise 3

 MISSING

Exercise 4

 MISSING

Sources

 Lecture slides from 252-0024-00L held at ETH during the spring semester 2014 by Prof. Dr. O. Hilliges

and Dr. K. Kourtis, available at http://ait.inf.ethz.ch/teaching/courses/2014-SS-Parallel-Programming/

 Wikipedia (rarely)

18 Not always, but if you’re asked to find some formula, keep log in mind

http://ait.inf.ethz.ch/teaching/courses/2014-SS-Parallel-Programming/

