Vectors

A vector is a certain displacement with a certain direction, but its origin is not defined. Two vectors are equal, if they have the same magnitude and direction.

1 Operations

Addition and subtraction of vectors is done by applying the respective operation on each component (e.g. $\binom{a_{x}}{a_{y}}+\binom{b_{x}}{b_{y}}=\binom{a_{x}+b_{x}}{a_{y}+b_{y}}$). Commutative and associative law apply $\vec{a}+\vec{b}=\vec{b}+\vec{a} \mid(\vec{a}+\vec{b})+$ $\vec{c}=\vec{a}+(\vec{b}+\vec{c})$. The zero vector \vec{o} is a vector with magnitude 0 and undefined direction, you can get it by e.g. $\vec{a}-\vec{a}=\vec{o}$. Scalar multiplicity works as following: $n *\binom{a_{x}}{a_{y}}=\binom{n * a_{x}}{n * a_{y}}$ (associative and distributive laws apply).

2 Position Vectors

If a point should be described, a position vector \vec{p} is used, e.g. point $P(3|2| 8)$ is described as $\vec{p}=$ $\left(\begin{array}{l}3 \\ 2 \\ 8\end{array}\right)$. The vector between point $A(2|5| 9)$ and point $B(3|8| 15)$ is $\stackrel{\rightharpoonup}{A B}=\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)$.

3 Magnitude

The magnitude of a vector is noted as $|\vec{a}|$ and calculated like this: $\vec{a}=\left(\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right),|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \cdot \mathrm{~A}$ vector with length (magnitude) 1 is called unit vector and a vector with the same direction as \vec{a} and length 1 is denoted as $\overrightarrow{a_{E}}$ and calculated by $\overrightarrow{a_{E}}=\frac{1}{|\vec{a}|} * \vec{a}$. For magnitude the following theorem applies: $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$.

4 Linear Dependency

A vector \vec{p} is a linear combination of the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}$, if there are $r_{1}, r_{2}, \ldots r_{n}$ such that $\vec{p}=$ $r_{1} * \overrightarrow{v_{1}}+r_{2} * \overrightarrow{v_{2}}+r_{n} * \overrightarrow{v_{n}}$. If such a combination exists, the set of vectors is called linearly dependent, if not it is called linearly independent, which is only the case if:

$$
(A) \stackrel{\rightharpoonup}{v_{1}} \neq 0, \overrightarrow{v_{2}} \neq 0, \ldots \overrightarrow{v_{n}} \neq 0
$$

and
(B) $r_{1} * \overrightarrow{v_{1}}+r_{2} * \overrightarrow{v_{2}}+r_{n} * \overrightarrow{v_{n}}=0$ which implies $r_{1}=r_{2}=\cdots=r_{n}=0$

Any vector \vec{p} can be constituted in 2D of two and in 3D of three, linearly independent vectors (called base vectors) as a unique linear caombination of $\vec{p}=r_{1} * \overrightarrow{v_{1}}+r_{2} * \overrightarrow{v_{2}}\left(+r_{3} * \overrightarrow{v_{3}}\right)$. Typical base vectors are in 2D $\binom{1}{0}$ and $\binom{0}{1}$ and in 3D $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

5 Dot Product

The dot product (scalar/inner product) is calculated as $\left(\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right) *\left(\begin{array}{c}b_{x} \\ b_{y} \\ b_{z}\end{array}\right)=a_{x} * b_{x}+a_{y} * b_{y}+a_{z} * b_{z}$. If this product equals zero, the two vectors are perpendicular. The angle between two vectors can be calculated as follows: $\cos (\alpha)=\frac{\vec{a} * \vec{b}}{|\vec{a}| *|\vec{b}|}$.

6 Lines

Any point X with position vector \vec{x} on a line can be calculated by adding a scaled vector to a certain point $\vec{a}: \vec{a}=\vec{x}+t * \overrightarrow{A B}$. E.g. the equation of the line passing through point $A(2|5| 9)$ and point $B(3|8| 15)$ is calculated as follows:

$$
\begin{aligned}
& \vec{a}=\left(\begin{array}{l}
2 \\
5 \\
9
\end{array}\right) \\
& \overrightarrow{A B}=\vec{b}-\vec{a}=\left(\begin{array}{c}
3 \\
8 \\
15
\end{array}\right)-\left(\begin{array}{l}
2 \\
5 \\
9
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
6
\end{array}\right) \\
& g: \vec{x}=\left(\begin{array}{l}
2 \\
5 \\
9
\end{array}\right)+t *\left(\begin{array}{l}
1 \\
3 \\
6
\end{array}\right)
\end{aligned}
$$

6.1 Position Relations

To check how lines $g: \vec{x}=\vec{a}+s * \vec{u}$ and $h: \vec{x}=\vec{b}+t * \vec{v}$ are related, you can do the following:

1. Check whether the direction vectors are linearly dependent. If yes, they are parallel or identical (continue with 2 a). If no, they are intersecting or skew (continue with 2 b).

2a. Check whether the lines have a common point. If they have a common point (you can try with the point described by the position vector of one of the lines), they are identical. If they don't, they're parallel.

2 b . Check whether the lines have a common point by equating the two line equations (make sure you use s and t, not t twice...). If you get a solution, the lines intersect, if you don't, they're skew.

- Linear Dependency, Parallel, Identical

Find a number r such that $\vec{u}=r * \vec{v}$

- Intersection Point

$$
\begin{aligned}
& a_{x}+s * u_{x}=b_{x}+t * v_{x} \\
& a_{y}+s * u_{y}=b_{y}+t * v_{y} \\
& a_{z}+s * u_{z}=b_{z}+t * v_{z}
\end{aligned}
$$

solve equations 1 and 2 for s and t and plug in to equation 3 to check whether equation 3 is stratified. If it is, you can calculate the intersection point plugging in s and t into g and h.

7 Planes

A plane is uniquely defined by

- Three distinct points
- A line and a point
- Two intersecting lines
- A direction perpendicular to the plane and a point on the plane

A plane can be (uniquely) defined by three different forms:

- Vector equation

$$
E: \vec{x}=\vec{a}+t * \vec{u}+s * \vec{v}
$$

- Normal vector equation
$E:(\vec{x}-\vec{p}) * \vec{n}=0$
- Cartesian equation
$E: a * x+b * y+c * z=d$

7.1 Obtaining Equations

7.1.1 Vector Equation

To get the vector equations from three, defined points A, B, C the following method is applied: $E: \vec{x}=$ $\left(\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right)+t *\left(\begin{array}{l}b_{x}-a_{x} \\ b_{y}-a_{y} \\ b_{z}-a_{z}\end{array}\right)+s *\left(\begin{array}{l}c_{x}-a_{x} \\ c_{y}-a_{y} \\ c_{z}-a_{z}\end{array}\right)$. To check whether a point P is on the plane, t and s have to be found such that:

$$
\begin{aligned}
& p_{x}=a_{x}+t * b_{x}+s * c_{x} \\
& p_{y}=a_{y}+t * b_{y}+s * c_{y} \\
& p_{z}=a_{z}+t * b_{z}+s * c_{z}
\end{aligned}
$$

7.1.2 Normal Equation

To find a vector perpendicular to \vec{u} and \vec{v} called \vec{n} is obtained by: $u_{x} * n_{x}+u_{y} * n_{y}+u_{z} * n_{z}=$ 0 and $v_{x} * n_{x}+v_{y} * n_{y}+v_{z} * n_{z}=0$. If you solve this system with your calculator, you get a solution which contains "@". Plug in any number for @ (this changes the magnitude of the normal vector).

The equation reads as follows: $E:\left(\vec{x}-\left(\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right)\right) *\left(\begin{array}{l}n_{x} \\ n_{y} \\ n_{z}\end{array}\right)=0$ whereas \vec{a} is a point on the plane.

7.1.3 Cartesian Equation

By expanding E : $\left(\vec{x}-\left(\begin{array}{l}p_{x} \\ p_{y} \\ p_{z}\end{array}\right)\right) *\left(\begin{array}{l}n_{x} \\ n_{y} \\ n_{z}\end{array}\right)=0$ and replacing $\left(\begin{array}{l}n_{x} \\ n_{y} \\ n_{z}\end{array}\right)$ by $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ a unique equation is obtained:

$$
\begin{aligned}
& \left(\left(\begin{array}{l}
x_{x} \\
x_{y} \\
x_{z}
\end{array}\right)-\left(\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right)\right) *\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \\
& \left(\begin{array}{l}
x_{x} \\
x_{y} \\
x_{z}
\end{array}\right) *\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)-\left(\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right) *\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \\
& \left(\begin{array}{l}
x_{x} \\
x_{y} \\
x_{z}
\end{array}\right) *\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right) *\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& a * x_{x}+b * x_{y}+c * x_{z}=a * p_{x}+b * p_{y}+c * p_{z} \\
& a * x_{x}+b * x_{y}+c * x_{z}=d
\end{aligned}
$$

7.2 Transforming Equations

7.2.1 Vector \rightarrow Normal

Solve these two equations for \vec{n}.

$$
\begin{aligned}
& \vec{v} * \vec{n}=0 \\
& \vec{u} * \vec{n}=0
\end{aligned}
$$

And set $\vec{a}=\vec{p}$

7.2.2 Normal \rightarrow Vector

Set $\vec{p}=\vec{a}$ and find two linearly independent and perpendicular to \vec{n} vectors (not unique) such that

$$
\begin{aligned}
& \vec{v} * \vec{n}=0 \\
& \vec{u} * \vec{n}=0
\end{aligned}
$$

7.2.3 Vector \rightarrow Cartesian

Solve this system of equations as described:

- solve the first equation for t
- plug t into the second and third equation
- solve the second equation for s
- plug s into the third equation
- simplify

If it helps, you can also change the order of the equations.

$$
\begin{aligned}
& x=a_{x}+t * u_{x}+s * v_{x} \\
& y=a_{y}+t * u_{y}+s * v_{y} \\
& z=a_{z}+t * u_{z}+s * v_{z}
\end{aligned}
$$

7.2.4 Cartesian \rightarrow Vector

$$
a * x_{x}+b * x_{y}+c * x_{z}=d
$$

First obtain three points on the plane by plugging in 0 for two variables and solving for the third variable to obtain A, B and C. This will give you something like $A\left(a_{x}|0| 0\right), B\left(0\left|b_{y}\right| 0\right)$ and $C\left(0|0| c_{z}\right)$.

$$
E: \vec{x}=\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right)+t *\left(\begin{array}{l}
b_{x}-a_{x} \\
b_{y}-a_{y} \\
b_{z}-a_{z}
\end{array}\right)+s *\left(\begin{array}{c}
c_{x}-a_{x} \\
c_{y}-a_{y} \\
c_{z}-a_{z}
\end{array}\right)
$$

7.2.5 Normal \rightarrow Cartesian

$$
\begin{aligned}
& \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\vec{n} \\
& d=\vec{n} * \vec{p}
\end{aligned}
$$

7.2.6 Cartesian \rightarrow Normal

$$
\vec{n}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

And find a point on the plane for \vec{p}.

