
Summary

Summary
V01 - Prototyping Roadmap
V02 - Services
V03 - Composition
V04 - Service Technologies
V05 - Containers
V06 - Functions
V07 - Monetization
V08 - Scalability
V09 - Quality
V10 - Development
V11 - Application Patterns
V12 - Service Domains
V13 - Rapid Prototyping

V01 - Prototyping Roadmap

Explore services & service ecosystems

Know how the module is structured

Understand prototyping goals

technical characteristics of a service are: visibility, interaction, effect, encapsulation, interoperability
a web service typicall uses HTTP (REST), URL/URI, and JSON/YAML/XML/plain text/binary documents/streams
cloud service: on-demand, pay-per-use, elasticity, robustness
microservice: light-weight, single-function, tangible & portable implementation
prototyping is about the Pareto principle (80/20) and focusses on features (less on security, conformance etc.)

V02 - Services

af://n0
af://n3
af://n29

V02 - Services

Understand what services are and how they are used

Know how to design, describe and develop services

Use service description and engineering tools

interfaces can be black, gray, or white boxes and consists of description + interaction (both are
structured/declarative formats using YAML or similar as base + domain-specific language (DSL))

description: describes intent, protocol, endpoints, messages, data types...

functional and non-functional properties
behavioural and compositional semantics
requirements, constraints, limitations
access mechanisms

interaction: network protocol with invocation semantics, API, adheres to description

af://n29

visibility implies discoverability (broadcast, registry etc.)

Simple RAML Example

taken from https://atom.io/packages/api-workbench

description to implementation is top-down (code generation) and bottom-up (description generation) which
leads to a roundtripping combined approach

V03 - Composition

Understand why complex applications consist of and/or bind to multiple services

Know dependency analysis and composition techniques

Use a microservice management platform

component is a piece of e.g. software and a composition consists of several components, some equal, some
with distinct function

service composition is mainly driven by reusability and extensibility

dependencies have a hidden cost (B goes down, A too), can bine fixed or late binding, inter- or intra-service

dependency graphs are directed, a/cyclic (latter: bad), un/weighted

A depends on B if

#%RAML 0.8
title: XKCD
baseUri: http://xkcd.com
schemas:
 ‐ comic: !include schemas/comic‐schema.json
/{comicId}/info.0.json:
 uriParameters:
 comicId:
 type: number
 get:
 description: |
 Fetch comics and metadata by comic id.
 responses:
 200:
 body:
 application/json:
 schema: comic
 example: !include examples/comic‐example.json
/info.0.json:
 get:
 description: |
 Fetch current comic and metadata.
 responses:
 200:
 body:
 application/json:
 schema: comic
 example: !include examples/comic‐example.json
documentation:
 ‐ title: Headline
 content: !include docs/headline.md

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

https://atom.io/packages/api-workbench
af://n76

declared as such
A invokes B (traceable)
logic of A depends on state within B (not traceable)

Peddycord‘s technique

passive network monitoring and analysis
logarithm-based ranking scheme
frequency inference

dependency resolution can be immediate, interactive (complementing immediate res.), or using a SAT solver

composite services:

offer a single service interface
distribute requests to multiple services within the composition (in parallel, serially, or more complex
routing)
require knowledge of dependencies (internally or by the caller)

advantages for composite services are improved QoS (e.g. higher availability) and QoE (e.g. flexibility to switch)

techniques/patterns for composite services:

 Orchestration Choreography Bundling Multiplexing

Definition

coordinated arrangement of
service invocations; may be
executable as another
service

global interaction
protocol between
autonomous service
partners

multiple
services
offered/used
in a bundle

multiple services
used in parallel
handling partial
requests

Potential
benefits

creation of value-added
services by re-using others

no central point of
control; declarative
messaging behavior

cheaper, less
administrative
overhead

flexible
redundancy
schemes,
“survival of the
fittest“

Potential
risks

issues with dependency
services (unavailable, faulty)

difficult
decentralized
enactment; little
industry acceptance

less flexibility
for
exchanging
single service

more
administrative
overhead, higher
cost due to
candidates

(Orchestration: e.g. AWS CloudFormation)

microservices: single-function-oriented services which scale elastically and operate resiliently backed by a
portable implementation; typical tasks:

deployment and management of microservice representations (i.e. containers)
partial upgrades without downtimes, honouring dependencies
canary testing
monitoring, migration, scaling, ... without downtimes
rapid prototyping

V04 - Service Technologies

Understand five distinct service execution technologies

Know how to package, deploy and run service implementations

Use an API modelling tool to complement the implementation with a description

Virtual machine (e.g. AWS EC2)

af://n196

Container (e.g. AWS ECS)

Application package (e.g. Heroku, OpenShift)

Function (e.g. OpenWhisk, AWS Lambda)

Unikernel (works on any IaaS)

Commonalities and Differences:

VM, C, UK: bootable
AP, F: executed on language virtual machine

UK, F: instantiation in milliseconds
AP, C, VM: instantiation in seconds to minutes

AP, C: application-level, easy wrapping
F, VM, UK: specialised development techniques

F, C: common for cloud-native applications
VM, AP: common for rather monolithic applications
UK: not yet common for anything

V05 - Containers

Dockerfile "commands": FROM, LABEL, COPY, ADD, RUN, CMD, EXPOSE, WORKDIR

Docker can map ports, volumes

Docker Compose describes:

af://n260

a set of microservices, implemented as Docker containers
build and run configuration
dependencies
instance details: replicas, restart policies, placement, networking, volumes

Containers in VMs: simple but limited use, more complexity, single points of failures

V06 - Functions

Combine knowledge on Function-as-a-Service in greater detail

Know about the state of technology and research challenges

Apply your knowledge with a “FaaSification“ research prototype

in FaaS, a function is the elementary unit, app/bundle the complex unit
input is application-specific; includes context
processing & output are application specific
usually constrained code size, memory, timeout etc.
pricing based on requests (calls) and/or load (memory)
code is either designed for FaaS or (automatically) transformed
automatic transformation use static (-> source code patching) and/or (=hybrid) dynamic code analysis (-> binary
patching)

Transformation rules

af://n292

FaaSification: process of automated decomposition of software application into a set of deployed and readily
composed function-level services

V07 - Monetization

Capture the mechanisms for services as utilities

Understand how to keep service consumption under control

Know how monitoring and API management works

Use a rating-charging-billing framework to charge for your application

maximize API potential: directories/portals, developer sites (e.g. docs), management
tools/frameworks/gateways (differentiate customers -> plans; monitoring etc.)

Kong: logical centralization; several microservices (traffic procy, admin API, DB services, dashboards), API
registration, API use

API Management aaS, e.g. AWS API Gateway

monitoring: quantified statements about system condition -> information at your fingertips

passive monitoring (small overheads) vs active (probes; possibly non-idempotent functions)

for services: monitor application, stack, dependency services -> CPU, utilization etc.

e.g. ELK (Elasticsearch, Logstash, Kibana)

Metering: monitoring & collection of metrics through (software) meters

leads to time series with characteristics such as sampling frequency/precision/accuracy, windows etc.
can be used for forecasting, detecting patterns, and anomaly detection

monetize APIs:

data collection (linked 3rd party services and aggregation+correlation of user data)
product adoption (custom integrations)
developer usage: charge per call / fixed quotas / overage pricing

rating: assign rates to usage data records (from metering)

af://n330

charging: process pricing model to create charge records

billing: aggregate charge records to payable amounts on bills

V08 - Scalability

Understand horizontal and vertical scaling

Know how to design a scalable application

Explain the influence of distributed designs on scalability

Develop your first scalable distributed service

service scalability: potential to be adapted in order to accommodate varying demand

Trigger: manual scaling vs. autoscaling

Properties:

Elasticity (time): how elastic? what is the degree of adaptation to varying demand? (= to which degree
is potential used?)
Boundedness (space): how bounded? what are upper/lower limits?
Transformativity (space/behaviour): how transformative? is self-similarity of system guaranteed, or
are there any bottlenecks?

for VMs/containers: vertical/up through hypervisor or horizontal/out (replication/re-instantiation; one
(processes/threads) or multiple hosts (distributed over the network))

auto-scaling: on-demand provisioning by using vertical and horizontal scaling; can be re- and proactive; reactive
can be app-agnostic and -specific, proactive only -specific

reactive: risk SLA violation; proactive: SLA maintained

autoregression: where are terms, is the rolling average

moving average: , where are terms, are damping factors

prediction pipeline: predictor -> resource planner -> action plan generator

af://n394

 multi-tier design
service-oriented
design

cloud-native application design

description

3: front-/backend,
DB; 4: client,
delivery+cache,
aggregation/logic,
services+data

uniform description
+ communication,
encapsulation, re-
use; discovery;
flexible dynamic
bindings

main target properties: scalability (↑) &
resilience (↑); refines service orientation
with microservices; exploits capabilities of
cloud environments

advantages

simple,
monolithic;
established
protocols;
sufficient
flexibility for
complementary
blocks

consequent
evolution of complex
software design;
viable basis for rapid
prototyping of
services

closest to ideal scalability: elastic, hardly
bounded, hardly transformative; matched
by contemporary technologies, e.g.
containers, functions; conversion of legacy
applications possible

disadvantages

inequal loads and
bottlenecks; only
applicable to
isolated
applications

waning support for
classical SOA
technologies; no
guidance for how to
design, build, run
services

technological immaturity and volatility;
emerging tools and languages,
incompatibilities, insufficiencies

coordination != cooperation != communication

design for failure incl. coordinator faults and attacks ("byzantine faults")

types of majorities: none, relative (), absolute (), byzantine (), consensus (

)

paxos consensus requires absolute majority of working processes (where are the number of
faulty, non-malicious processes)

roles: voters, learners, proposers, leader
depends on leader election (successful iff one leader)
depends on redundancy (ignores failures of redundant participants)

Swedish leader election: based on rounds - elimination of candidates

each round: flip a coin -> winners proceed into next round; if no winner, all play again
last remaining candidate is leader

Raft: uses log replication; random timeout for follows; absolute majority of votes; heartbeats define election

V09 - Quality

Understand how to express quality levels.

Know established quality models.

af://n500

Understand the need to “design for change“ and “design for failure“, generalizable to “design for inherent
quality“.

Use simulation and emulation tools to see the effects of suitable designs without breaking anything.

Service Quality Model:

simplified capturing of non-functional service characteristics
examples: performance, cost, compliance to standards
domain-specific models: e.g. e-government: transparency important aspect or e.g. e-learning: focus on
knowledge and competencies

example 1: runtime, transactions, configuration/cost, security

example 2: performance, usability, reliability, responsibility, costs&conditions, data security, flexibility, customer
service

measurable quality: described metrics (non-/authorative sources); measured metrics (monitoring, attestation);
estimated metrics (further sources, prediction etc.); static analysis (descriptions); dynamic analysis
(measurements)

metaquality: dynamic (re-)binding

replica: repeated/redundant software component or data

benefit: faster response time (“survival of the fittest“ - individual use); improved safety (backup - joint use)
cost: increased storage requirements; increased computation and bandwidth depending on replication
mode

service replication can be partial/decomposed (microservices) or full/n-fold (horizontal scaling)

data replication can be partial/erasures or full/n-fold

data replication can be done using XOR erasure coding (c = a XOR b -> 50% redundancy with 2 significant and 1
redundant fragment), possibly in a GF(2) resulting in arbitrary redundancy

replication tools for services are component descriptions or proxy servers (e.g. HAProxy)

replication tools for data are incremental/delta backups, distributed versioned replication (e.g. Git) or erasure
coding

fault injection allows to find problems before they releases; either in a the live or simulated/emulated system

fault injection levels and methods:

software level: fuzzing: random or crafted (invalid) data input to applications; on the API level, through files
or databases, input device emulation; data modifications (e.g. user removal, file substitution)
system level: resource exhaustion: full disk, full memory, CPU overload, network flooding; limits
exhaustion: max # of file descriptors, sockets, threads, files etc.; random process signalling and
termination
service/network level: artificial slowdown; random port blocking; protocol mutation

V10 - Development

Decide on how and where to spend your development effort

Distinguish between general approaches and concrete tools

Use online development, build, test and integration tools

development for the cloud:

value proposition: separation of development and operation

long feedback cycles; mismatches; inconsistencies

value proposition: shortened time to first development cycle

always-online requirement; higher risk for vendor lock-in; development/operations separations of
concerns lifted

there are web-based SaaS IDEs

service artefacts: service source software, service implementation, service description, service configuration,
service contract template, composition description, client package

V11 - Application Patterns

Identify patterns at a higher level compared to software engineering

Know useful patterns for building cloud-native applications

Enhance your software with more sophisticated patterns

1-node, 1-container patterns

upward: information exposure; metrics: health, queries per second; profiling: threads, stack, network
statistics, configurations, logs
downward: lifecycle adherence; yields software components which can be deterministically controlled
containers: resource accounting and allocation; packaging, deployment, re-use; failure containment
boundary

1-node, n-containers patterns (multiple containers, shared namespace, shared IP address, atomic scheduling)

sidecar / sidekick: "pick-up car" for log transport; "parcel car" for serving synchronized content; "ACS car"
for repair; "toll car" for service discovery
ambassador: to proxy and represent; example: frontend, backend + external shards for backend
adapter: to normalize and present; example: frontend, monitoring adapter + external monitoring service

af://n579
af://n612

m-nodes, n-containers patterns (multiple containers, distinct namespaces, distinct IP addresses, independent
scheduling)

leader election: election microservice as re-usable container; standard API for voting and determining
leader available to application containers
work queue: set of containers: one coordinator, some grabbers; connected to application-specific workers
via standard API
scatter/gather: distribution of requests

CNA (cloud-native application) technologies ingredients: application (microservices, support services) and
environment (microservice management platform, distributed initialisation system, operating system)

V12 - Service Domains

Understand the importance of services in various domains

Know service technologies, protocols and tools for three particular domains

Use diverse protocols and message exchange patterns in your application

domain: context with specialized knowledge, processes and tools
functional domains correspond to sectors of the economy
service domains correspond to functional domains
e.g. robot OS: messaging uses simple types and arrays/structs and uses both TCP and UDP; based on pub/sub
topics as well as synchronous request/reply and asynchronous, monitorable, and interruptable actions
e.g. mobile application: code offloading to e.g. server
e.g. multimedia: long-running interactions (many internet protocols have limited session semantics) using XMPP
or WebRTC

V13 - Rapid Prototyping

Understand what rapid prototyping is

Master complex service engineering projects with reduced effort

Use one tool to realize your next service

requirements on service development: speed, quality, alignment

constrained optimization: minimum time with acceptable quality

why rapid?

engineering progress: evolutionary rather than revolutionary
new technologies: quick feedback about feasibility
focus on doing, not talking
reduction of abstraction and cognitive load

kinds: throwaways, evolutionary, incremental, extreme

methodologies: blueprinting (design-first/top-down), method extraction (code-first/bottom-up), minimalism,
simulation & emulation, staging

minimalism: replace prod solutions with light-weight solutions (e.g. PostgreSQL by SQLite)

fragmented tooling support; no complete lifecycle solution

af://n663
af://n690

	Summary
	V01 - Prototyping Roadmap
	V02 - Services
	V03 - Composition
	V04 - Service Technologies
	V05 - Containers
	V06 - Functions
	V07 - Monetization
	V08 - Scalability
	V09 - Quality
	V10 - Development
	V11 - Application Patterns
	V12 - Service Domains
	V13 - Rapid Prototyping

